GUÍA PARA LA ALIMENTACIÓN DE RUMIANTES
GUIA PARA LA ALIMENTACION DE RUMIANTES

Daniel Cozzolino(1)
Guillermo Pigurina(2)
María Methol(3)
Yamandú Acosta(4)
Juan Mieres(4)
Heino Basssewitz(5)

(1) Ing. Agr. Nutrición Animal, INIA La Estanzuela
(2) Ing. Agr., M.Sc. Nutrición Animal, INIA Tacuarembó
(3) Ing. Agr., Nutrición Animal, INIA La Estanzuela (hasta 31/12/1991)
(4) Ing. Agr., M.Sc. Lechería, INIA La Estanzuela
(5) Dr. Sci. Agr., Convenio INIA/GTZ
<table>
<thead>
<tr>
<th>PRÓLOGO</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. TABLA DE CONTENIDO NUTRICIONAL DE PASTURAS Y FORRAJES DEL URUGUAY</td>
<td></td>
</tr>
<tr>
<td>I.1. INTRODUCCIÓN</td>
<td>3</td>
</tr>
<tr>
<td>I.2. ORIGEN DE LA INFORMACIÓN</td>
<td>3</td>
</tr>
<tr>
<td>I.3. DESCRIPCIÓN DE LOS ANÁLISIS REALIZADOS</td>
<td>3</td>
</tr>
<tr>
<td>I.3.1. MATERIA SECA</td>
<td>3</td>
</tr>
<tr>
<td>I.3.2. CENIZAS</td>
<td>4</td>
</tr>
<tr>
<td>I.3.3. MATERIA ORGÁNICA</td>
<td>4</td>
</tr>
<tr>
<td>I.3.4. PROTEÍNA CRUDA</td>
<td>4</td>
</tr>
<tr>
<td>I.3.5. DIGESTIBILIDAD DE LA MATERIA ORGÁNICA</td>
<td>4</td>
</tr>
<tr>
<td>I.3.6. FIBRA INSOLUBLE EN DETERGENTE ÁCIDO</td>
<td>4</td>
</tr>
<tr>
<td>I.3.7. FIBRA INSOLUBLE EN DETERGENTE NEUTRO</td>
<td>5</td>
</tr>
<tr>
<td>I.4. ENERGÍA</td>
<td>5</td>
</tr>
<tr>
<td>I.5. CLASIFICACIÓN DE LOS ALIMENTOS</td>
<td>7</td>
</tr>
<tr>
<td>I.6. FORMULACIÓN DE RACIONES</td>
<td>7</td>
</tr>
<tr>
<td>I.7. CONSIDERACIONES FINALES Y USOS DE LA TABLA</td>
<td>8</td>
</tr>
<tr>
<td>I.8. INTERPRETACIÓN DE LA TABLA</td>
<td>9</td>
</tr>
<tr>
<td>I.9. TERMINOLOGÍA USADA Y ABRÉVIATURAS</td>
<td>10</td>
</tr>
<tr>
<td>I.11. ANEXO II. RESULTADOS DE ANÁLISIS DE MUESTRAS ENVIADAS AL LABORATORIO LANDWIRTSCHAFTSKAMMER RHEINLAND</td>
<td>36</td>
</tr>
<tr>
<td>II. ESTIMADORES DE VALOR NUTRITIVO PARA PRODUCCIÓN DE LECHE</td>
<td></td>
</tr>
<tr>
<td>II.1. INTRODUCCIÓN</td>
<td>41</td>
</tr>
<tr>
<td>II.2. UTILIZACIÓN DE NUTRIENTES</td>
<td>41</td>
</tr>
<tr>
<td>II.2.1. PROTEÍNA</td>
<td>41</td>
</tr>
<tr>
<td>II.2.2. ENERGÍA</td>
<td>43</td>
</tr>
<tr>
<td>II.3. MÉTODOS DE EVALUACIÓN NUTRITIVA</td>
<td>45</td>
</tr>
<tr>
<td>II.3.1. EVALUACIÓN VISUAL</td>
<td>45</td>
</tr>
<tr>
<td>II.3.2. ANÁLISIS QUÍMICOS</td>
<td>45</td>
</tr>
<tr>
<td>II.4. INTERPRETACIÓN DE LOS RESULTADOS</td>
<td>46</td>
</tr>
<tr>
<td>II.4.1. MATERIA SECA</td>
<td>46</td>
</tr>
<tr>
<td>II.4.2. PROTEÍNA</td>
<td>47</td>
</tr>
<tr>
<td>II.4.3. FRACCIÓN FIBRA</td>
<td>47</td>
</tr>
</tbody>
</table>
III. CONSIDERACIONES ECONOMICO-NUTRICIONALES DE LA ELECCIÓN DE SUPLEMENTOS

III.1. INTRODUCCIÓN 51
III.2. VALORIZACIÓN ECONÓMICA DE SUPLEMENTOS Y FORRAJES 51
III.2.1. EL VALOR DEL COSTO 51
III.2.2. EL VALOR DE TRANSFORMACIÓN 52
III.2.3. EL VALOR DE SUSTITUCIÓN 54
III.2.4. EL VALOR ÍNDICE 57

BIBLIOGRAFÍA CONSULTADA 59
PROLOGO

Esta publicación está dirigida a técnicos, productores y estudianios, ofreciéndoles una herramienta de trabajo de gran utilidad y de sentido demanda desde hace largo tiempo. La importancia de contar con una tabla de Valor Nutritivo de Alimentos del Uruguay es bien conocida por todos. A medida que los sistemas de producción se intensifican aumenta la demanda de insumos y gran parte de los costos extra de producción corresponden a la alimentación animal. Por lo tanto la información básica para ajustar las necesidades nutricionales de los animales a los alimentos disponibles y su costo relativo es cada vez más relevante.

En la primera edición de esta publicación se incluyeron un número limitado de muestras y especies, que sirvieron de punto de partida para una segunda edición.

La publicación también incluye información fundamental para ayudar a la interpretación de los componentes nutritivos de los alimentos, con especial enfoque hacia la producción lechera. Esta información la manejan fluidamente productores y técnicos en otros países. Es tiempo que investigadores, técnicos y productores uruguayos usemos el mismo lenguaje.

Se consideró imprescindible incluir aspectos económicos, que son los que en definitiva miden el éxito o fracaso del uso intensivo de insumos. Se brinda la información básica para el cálculo de costos y la elección de alimentos.

Esta Guía para la Alimentación de Ruminantes es la segunda entrega de una serie que esperamos será de utilidad para todos aquellos que trabajan en la alimentación de animales.
I. TABLA DE CONTENIDO NUTRICIONAL DE PASTURAS Y FORRAJES DEL URUGUAY

G. PIGURINA M. METHOL

I.1. INTRODUCCIÓN

Las pasturas y otros tipos de forrajes en especial las de clima templado, muestran gran variación en calidad en sus distintas etapas de crecimiento y en las diferentes fracciones de la planta (hoja, tallo, fruto fundamentalmente). Las diferencias en calidad de los forrajes, se deben además a variaciones en las condiciones ambientales (suelo, clima, fertilización), al material genético, al manejo, y en caso de los forrajes conservados—al tipo y tiempo de almacenamiento. En los alimentos concentrados y suplementos (expellers, afrechilos, harinas, etc.), las características del proceso industrial que los originan definen en gran medida su calidad.

Por lo anterior, se deduce que es posible que la composición química de los alimentos disponibles en el Uruguay, sea diferente de la información correspondiente a categorías de alimentos iguales o similares que aparecen publicadas en tablas extranjeras, las que—aunque la falta de información local—han sido y son consultadas habitualmente.

Desde otro punto de vista —y hasta el momento—la información sobre composición química y valor nutritivo de los alimentos en Uruguay se encuentra incompleta, dispersa y fraccionada. Este trabajo pretende contribuir a la unificación de criterios técnicos de análisis y evaluación y a aumentar el conocimiento sobre el valor nutricional de los alimentos disponibles en el Uruguay.

I.2. ORIGEN DE LA INFORMACIÓN

El Laboratorio de Nutrición Animal del INIA La Estanzuela normalmente determina el valor nutritivo de más de 2.000 muestras al año. A partir del año 1999 se creó una base de datos con las muestras analizadas, que permite ordenar la información en forma de "cuadro", que está a disposición de productores y técnicos.

En todos los casos se presenta el número de muestras analizadas, el valor promedio y el desvío estándar de ese valor.

I.3. DESCRIPCIÓN DE ANÁLISIS REALIZADOS

Se incluyen los resultados de los siguientes análisis de laboratorio: contenido de materia seca (% MS), contenido de cenizas (% Cenizas), contenido de proteína cruda (% PC), coeficiente de digestibilidad "in vitro" de la materia orgánica (% DMO). Los principios de cada uno de esos indicadores se explican brevemente a continuación.

I.3.1. MATERIA SECA (% MS)

Expresa el contenido de materia seca de un alimento, y se obtiene secando la muestra en una estufa de aire forzado a 60 °C hasta peso constante, para eliminar el contenido de agua.
I.3.2. CENIZAS (%)

Es equivalente a contenido (cantidad) de minerales. Se obtiene por incineración de la muestra a 550 °C en una mufia u horno durante 3 horas (2).

I.3.3. MATERIA ORGÁNICA (% MO)

El contenido de materia orgánica resulta de restar el contenido de cenizas totales al contenido de materia seca; % MO = % MS – % Ceniza.

I.3.4. PROTEÍNA CRUDA (% PC)

Se obtiene a partir del contenido de nitrógeno total de un alimento multiplicado por el factor 6,25, porque las proteínas —en promedio— tiene 16% de nitrógeno. El factor 6,25 surge de la relación 100/16. El valor de PC incluye la proteína verdadera y otros compuestos nitrogenados no proteicos obtenidos por el método Kjeldahl (2).

I.3.5. DIGESTIBILIDAD DE LA MATERIA ORGÁNICA (% DMO)

Representa el porcentaje de un alimento consumido que no es eliminado por las heces, y por tanto queda disponible dentro del animal para cumplir con las funciones de mantenimiento, producción y reproducción. Es un buen estimador de la energía disponible de un alimento. Se obtiene incubando "in vitro" la muestra en líquido ruminal a 37 °C, seguido de una digestión ácida con pepsina.

Los valores de Energía fueron estimados a partir del % DMO, a través de la adaptación de las ecuaciones utilizadas en las tablas del National Research Council (NRC, 1989; 1988) (14) (15).

I.3.6. FIBRA INSOLUBLE EN DETERGENTE ACIDO (FDA)

Es la fracción de la pared celular del forraje que es más comúnmente incluida en los resultados de laboratorio. Incluye celulosa, lignina y sílice.
1.3.7. FIBRA INSOLUBLE EN DETERGENTE NEUTRO (FDN)

La FDN es la porción de la muestra de forraje que es insoluble en un detergente neutro (pH 7,0). Está básicamente compuesta por celulosa, hemicelulosa, lignina y silice, y se la nombra comúnmente como "fracción pared celular".

1.4. ENERGÍA

La energía de un alimento puede considerarse como el combustible que el animal utiliza, para lograr los productos derivados de ese alimento. Al igual que todo proceso transformador, el mismo consume energía, por lo cual no es 100% eficiente. Hay fugas de energía en el proceso de digestión y metabolización de los alimentos para transformarlos en "productos" orgánicos del animal.

La energía total de un alimento es la suma de los valores energéticos de sus constituyentes, por tanto variará de acuerdo con su composición química. La energía total se mide en una bomba calorimétrica donde el alimento es quemado totalmente. La energía liberada en forma de calor se denomina "calor de combustión", o más frecuentemente energía bruta (EB) y se expresa normalmente en megacalorías* por quilo de materia seca.

La EB de un alimento, menos la energía perdida por las heces se llama energía digestible (ED). Si a la ED se le resta la energía perdida en forma de orina y gases, tenemos la energía metabolizable (EM). La EM es la porción de energía del alimento que puede ser usada por el animal.

Si a la EM se descuentan las pérdidas de energía en forma de calor, se obtiene el valor de energía neta (EN). La Energía Neta (EN) es la parte de energía del alimento que el animal usa para mantenimiento (ENm), engorde (ENg) y producción de leche (ENL). La eficiencia de utilización del alimento para "mantenimiento" es similar que para lactación, y éstas son mayores que para ganancia de peso corporal.

Existen tablas de requerimientos basadas en estudios con animales en grandes cámaras calorimétricas (o "calorimétricos"), donde se determinan las pérdidas de energía que ocurren en las distintas etapas de la digestión y absorción, mediante pruebas metabólicas. Estos requerimientos de energía de los animales se pueden expresar como necesidades de ED, EM o EN.

De esta forma, la disponibilidad de energía de un alimento puede expresarse como la cantidad de EN que aporta por quilo (kg) de MS para cubrir las necesidades de ENm, ENg o de ENL de los animales. Estos requerimientos de energía pueden ser cubiertos o no por un

* 1 Mcal = 10^4 calorías.

Figura 1. Esquema de partición de la energía, incluyendo sus pérdidas y resultados.
alimento dado, de acuerdo a la concentración energética de ese alimento y de la capacidad de consumo del animal.

Existen varias relaciones matemáticas que expresan el contenido de energía de un alimento, basadas en diferentes componentes de la materia seca total (ver Capítulo II). La tendencia en otros países es utilizar los componentes de la Pared Celular por el Método de análisis de los detergentes por su correlación con el valor nutritivo de determinado alimento y su consumo. Para el Cuadro que se presenta en esta publicación se utilizaron ecuaciones basadas en la DMO porque es un excelente estimador del contenido de energía de los forrajes.

Los valores de energía utilizados en el trabajo que origina la presente publicación surgen de las siguientes ecuaciones:

\[
ENI (Mcal/kg MS) = -0.12 + 0.0245 \times (\% DMO \times \% MO/100) \] \[1\]

donde DMO sustituye a NDT en la ecuación presentada en (12), dado que el % NDT surge de la suma de las distintas fracciones que componen los alimentos (excepto las cenizas), multiplicadas por el coeficiente de digestibilidad de cada una. El % DMO se obtiene del conjunto de estas fracciones y no por separado como el caso del % NDT y dado que el % de grasa de los forrajes es bajo, pueden considerarse expresiones equivalentes. Para expresar el % DMO en MS, se debe multiplicar por el % MO (10).

Asumiendo que la eficiencia de utilización de la EM para lactación es del 60%, entonces \(EM \times 0.60 = ENI \), por tanto:

\[
EM = ENI/0.60 \] \[2\]

La ENm y ENg se obtienen a través de ecuaciones establecidas en (8):

\[
ENm = (1.37 \times EM) - (0.138 \times EM^2) + (0.0105 \times EM^3) - 1.12 \] \[3\]

\[
ENg = (1.42 \times EM) - (0.174 \times EM^2) + (0.0122 \times EM^3) - 1.65 \] \[4\]
Todos los datos están expresados en "base materia seca", es decir, referidos al contenido de MS de cada alimento y no al alimento tal cual es consumido u ofrecido.

1.5. CLASIFICACIÓN DE LOS ALIMENTOS

Convencionalmente, los alimentos se clasifican en ocho grupos:

1) Forrajes secos y fibrosos.
2) Pasturas, campo natural y forrajes frescos.
3) Ensilajes.
4) Alimentos energéticos.
5) Suplementos proteicos.
6) Suplementos minerales.
7) Suplementos vitamínicos.
8) Aditivos.

Los alimentos con más de 18% de Fibra Cruda o 35% de Pared Celular son forrajes secos o fibrosos (pajas, heno); con menos de 20% de Proteína Cruda y menos de 18% de Fibra Cruda o menos de 35% de Pared Celular son energéticos (granos de maíz, sorgo), y aquellos con 20% o más de Proteína Cruda son proteicos (harina de soja, harina de carne, expeliter de girasol).

1.6. FORMULACIÓN DE RACIONES

No es propósito de este trabajo profundizar en este tema, sino ofrecer una guía muy general para la formulación de raciones.

Partiendo de la base que interesa ofrecer una dieta económica, nutritiva y adecuada a los requerimientos del animal, se deben tener en cuenta una serie de pasos al formular una ración o dieta balanceada.

Los requerimientos del animal o grupo de animales para los distintos procesos de producción, se obtienen de tablas internacionales (NRC, ARC, USA-Canadien, etcétera). Se deben definir los requerimientos en base al tamaño del animal, peso vivo y a la ganancia de peso o producción de leche esperados. También deben considerarse los distintos estados fisiológicos de hembras en gestación o lactancia. Dado que la información de estas tablas fue determinada para animales estabulados, los requerimientos totales para animales en pastoreo deben aumentarse (entre 10 y 50% según las características de la pastura y del postrero). El uso de tablas de requerimientos de animales debe ser criterioso, teniendo en cuenta que son sólo guías generales. Las situaciones particulares deben manejarse con cautela, dejando lugar para realizar correcciones y ajustes.

La formulación de una ración o dieta comienza por la elección de una fuente de
energía o dieta base, tal como una pastura, heno o ensilaje. Luego se determinan los nutrientes que aporta esa dieta base y se comparan con los requerimientos del animal. Finalmente se determina la composición y cantidad de suplementos que serán ofrecidos –además de la dieta base (pastura, heno o ensilaje)– para compensar por lo nutriente falta.

La formulación más sencilla es cuando se utilizan uno o dos componentes para la ración. El grado de complicación aumenta al considerar varios componentes y su precio relativo. Existen métodos matemáticos simples –incluido programas para microcomputadoras– que permiten resolver matrices con múltiples componentes, y formular raciones a mínimo costo con mayor rapidez.

1.7. CONSIDERACIONES FINALES Y USOS DE LA TABLA

La composición de los alimentos, especialmente pasturas en crecimiento y otros forrajes, no es constante. Las muestras individuales diferirán en mayor o menor medida con los valores presentados en esta tabla. Las diferencias podrán deberse a la variedad, técnicas de muestreo, momento de colecta, factores climáticos, suelo o tiempo de almacenamiento. En lo posible, se deberían hacer y usar análisis de los alimentos que se están utilizando, como esto no siempre es posible, la información en forma de tabla es una alternativa razonable.

Cuando se usa información de tablas, debe entenderse que existe variación en la composición de los alimentos, y por lo tanto los valores deben usarse sólo como guía. Los componentes orgánicos (por ejemplo proteína cruda), pueden variar en ± 15%, los componentes inorgánicos en ± 30%, y los valores de energía en ± 10%.

También debe tenerse presente que esta información proviene de análisis químicos y/o biológicos, representando los valores absolutos que el alimento contiene, y no necesariamente los que el animal utiliza. Existen factores de comportamiento animal y del desarrollo y crecimiento de las pasturas que afectan la utilización en el momento de consumirlas. Debe considerarse siempre que los valores de la tabla son una guía.

Como se expresó anteriormente, ésta es la segunda edición de la información generada en el Laboratorio de Nutrición Animal del INIA La Estanzuela, la cual se irá ajustando anualmente para ofrecer valores cada vez más representativos, y agregando más especies y alimentos.
1.8. INTERPRETACIÓN DE LA TABLA

La entrada a la tabla está ordenada por el nombre común, seguido del nombre científico de la muestra analizada (figura 2). Sirve una breve descripción del tipo de muestra y la abreviación del estado fisiológico o estado de crecimiento de la planta en el momento de corte, según el siguiente código:

- **VEG** = vegetativo
- **IF** = inicio de floración
- **FM** = floración media
- **FC** = floración completa
- **GL** = grano lechoso
- **GP** = grano pastoso
- **GM** = grano maduro
- **MAD** = madurez

En el recuadro superior de la tabla se indica el tipo de análisis realizado:

- **MS** = % de materia seca
- **DMO** = % digestibilidad "in vitro" de la materia orgánica
- **PC** = % de proteína cruda
- **Ceniza** = % de ceniza
- **FDA** = Fibra detergente ácida
- **FDN** = Fibra detergente neutra
- **EM** = Mcal por quilo de MS, de Energía Metabolizable
- **ENI** = Mcal por quilo de MS, de Energía Neta para lactación
- **ENm** = Mcal por quilo de MS, de Energía Neta para mantenimiento
- **ENg** = Mcal por quilo de MS, de Energía Neta para ganancia de peso

Los valores se indican con el valor promedio, seguido del símbolo "±", y del valor de desvío estándar. El número de muestras analizadas se indica debajo de los valores anteriores.

Figura 2. Interpretación de la tabla.
I.9. TERMINOLOGÍA USADA Y ABBREVIATURAS

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Mayor que</td>
</tr>
<tr>
<td><</td>
<td>Menor que</td>
</tr>
<tr>
<td>±</td>
<td>Más, menos</td>
</tr>
<tr>
<td>%</td>
<td>Por ciento</td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
</tr>
<tr>
<td>ad lib.</td>
<td>ad libitum (libre acceso)</td>
</tr>
<tr>
<td>°C</td>
<td>Grados de temperatura en escala Celsius (antes denominado como "centígrado")</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcio</td>
</tr>
<tr>
<td>CD</td>
<td>Coeficiente de digestibilidad</td>
</tr>
<tr>
<td>DE</td>
<td>Desvío estándar</td>
</tr>
<tr>
<td>DMO</td>
<td>Digestibilidad "in vitro" de materia orgánica</td>
</tr>
<tr>
<td>EB</td>
<td>Energía bruta</td>
</tr>
<tr>
<td>ED</td>
<td>Energía digestible</td>
</tr>
<tr>
<td>EE</td>
<td>Extracto etéreo</td>
</tr>
<tr>
<td>EF</td>
<td>Estado fisiológico</td>
</tr>
<tr>
<td>EM</td>
<td>Energía metabolizable</td>
</tr>
<tr>
<td>EN</td>
<td>Energía neta</td>
</tr>
<tr>
<td>ENN</td>
<td>Extracto no nitrogenado</td>
</tr>
<tr>
<td>ENg</td>
<td>EN para ganancia</td>
</tr>
<tr>
<td>ENl</td>
<td>EN para lactación</td>
</tr>
<tr>
<td>ENm</td>
<td>EN para mantenimiento</td>
</tr>
<tr>
<td>FC</td>
<td>Fibra cruda</td>
</tr>
<tr>
<td>FDA</td>
<td>Fibra detergente ácido</td>
</tr>
<tr>
<td>FDN</td>
<td>Fibra detergente neutro</td>
</tr>
<tr>
<td>g</td>
<td>Gramo(s)</td>
</tr>
<tr>
<td>GTZ</td>
<td>Agencia Alemana de Cooperación Técnica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>ha</td>
<td>Hectárea(s)</td>
</tr>
<tr>
<td>INIA</td>
<td>Instituto Nacional de Investigación Agropecuaria</td>
</tr>
<tr>
<td>K</td>
<td>Potasio</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramo(s)</td>
</tr>
<tr>
<td>Mcal</td>
<td>Megacaloría</td>
</tr>
<tr>
<td>MO</td>
<td>Materia orgánica</td>
</tr>
<tr>
<td>MOD</td>
<td>Materia orgánica digestible</td>
</tr>
<tr>
<td>MS</td>
<td>Materia seca</td>
</tr>
<tr>
<td>n</td>
<td>Número de observaciones</td>
</tr>
<tr>
<td>N</td>
<td>Nitrógeno</td>
</tr>
<tr>
<td>Na</td>
<td>Sodio</td>
</tr>
<tr>
<td>NDT</td>
<td>Nutrientes digestibles totales</td>
</tr>
<tr>
<td>NNP</td>
<td>Nitrógeno no proteico</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>P</td>
<td>Fósforo</td>
</tr>
<tr>
<td>PC</td>
<td>Proteína cruda</td>
</tr>
<tr>
<td>pH</td>
<td>Potencial hidrógeno</td>
</tr>
<tr>
<td>ppm</td>
<td>Partes por millón</td>
</tr>
<tr>
<td>ton</td>
<td>Tonelada(s)</td>
</tr>
<tr>
<td>U.I.</td>
<td>Unidad(es) internacional(es)</td>
</tr>
<tr>
<td>vs</td>
<td>Versus (contra)</td>
</tr>
</tbody>
</table>

AGRADECIMIENTOS

Los autores agradecen a la Agencia de Cooperación Técnica Alemana GTZ, por el interés y apoyo en la realización de esta publicación, y al personal del Laboratorio de Nutrición Animal de INIA La Estanzuela.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>ESTADO</th>
<th>MS</th>
<th>DMO</th>
<th>PC</th>
<th>CENIZA</th>
<th>FDA</th>
<th>EM</th>
<th>ENI</th>
<th>ENm</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FISIOL</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACHICORIA</td>
<td></td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td>VEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>16,2±2,2</td>
<td>5</td>
<td>69,4±3,3</td>
<td>20</td>
<td>16,0±4,8</td>
<td>20</td>
<td>13,4±1,4</td>
<td>20</td>
<td>1,4±0,07</td>
<td>20</td>
</tr>
<tr>
<td>planta entera</td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>22,1±0,8</td>
<td>4</td>
<td>60,9±7,9</td>
<td>28</td>
<td>12,4±4,7</td>
<td>28</td>
<td>11,8±2,1</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>planta entera</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>IF</td>
<td>16,4±0,7</td>
<td>4</td>
<td>60,3±2,9</td>
<td>24</td>
<td>7,9±1,1</td>
<td>24</td>
<td>8,8±0,7</td>
<td>24</td>
<td>1,0±0,12</td>
</tr>
<tr>
<td>ensilaje</td>
<td>FM</td>
<td>20,7±0,5</td>
<td>4</td>
<td>62,3±5,1</td>
<td>4</td>
<td>10,5±0,7</td>
<td>4</td>
<td>10,5±0,9</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>ACHICORIA +</td>
<td></td>
</tr>
<tr>
<td>TREBOL ROJO</td>
<td></td>
</tr>
<tr>
<td>ensilaje, con 40%</td>
<td>FC</td>
<td>21,7±2,5</td>
<td>19</td>
<td>53,5±5,3</td>
<td>19</td>
<td>13,0±2,1</td>
<td>19</td>
<td>9,6±0,7</td>
<td>19</td>
<td>-</td>
</tr>
</tbody>
</table>

MS = MATERIA SECA. DMO = DIGESTIBILIDAD 'IN VITRO' DE LA MATERIA ORGANICA. PC = PROTEINA CRUDA. FDA = FIBRA DETERGENTE ACIDO. FDN = FIBRA DETERGENTE NEUTRO. EM = ENERGIA METABOLIZABLE. ENI = ENERGIA NETA PARA LACTACION. ENm = ENERGIA NETA PARA MANTENIMIENTO. ENg = ENERGIA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>ESTADO FISIOL</th>
<th>MS</th>
<th>DMO</th>
<th>PC</th>
<th>CENIZA</th>
<th>FDA</th>
<th>FDN</th>
<th>EMI</th>
<th>ENI</th>
<th>ENm</th>
<th>ENq</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALFALFA</td>
<td></td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>VEG</td>
<td>—</td>
<td>70.25 ± 0.89</td>
<td>20.27 ± 0.5</td>
<td>9.55 ± 0.49</td>
<td>26.7 ± 0.94</td>
<td>50.7 ± 2.67</td>
<td>2.23 ± 0.94</td>
<td>1.43 ± 0.07</td>
<td>1.56 ± 0.5</td>
<td>0.62 ± 0.05</td>
</tr>
<tr>
<td>planta entera</td>
<td>FC</td>
<td>—</td>
<td>64.75 ± 2.57</td>
<td>11 ± 0.27</td>
<td>38.90 ± 5.25</td>
<td>41.31 ± 4.04</td>
<td>2.3 ± 0.78</td>
<td>1.66 ± 0.04</td>
<td>1.94 ± 0.45</td>
<td>0.79 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>hoja</td>
<td>IF</td>
<td>89.5</td>
<td>67.3 ± 1.3</td>
<td>21.19 ± 0.5</td>
<td>10.1</td>
<td>—</td>
<td>2.3 ± 0.04</td>
<td>1.4 ± 0.03</td>
<td>1.4 ± 0.03</td>
<td>0.83 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>heno</td>
<td>FM</td>
<td>63.0</td>
<td>16.5</td>
<td>—</td>
<td>—</td>
<td>2.4</td>
<td>1.44</td>
<td>1.5</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>heno</td>
<td>FC</td>
<td>65.0 ± 6.2</td>
<td>14.7 ± 4.3</td>
<td>7.2 ± 3</td>
<td>—</td>
<td>2.5 ± 0.3</td>
<td>1.5 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>1.02 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>FM</td>
<td>37.1</td>
<td>63.1</td>
<td>17.9</td>
<td>12.5</td>
<td>—</td>
<td>2.1</td>
<td>1.4</td>
<td>1.4</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>ARACHIS</td>
<td></td>
</tr>
<tr>
<td>Arachis spp.</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>92.9 ± 0.38</td>
<td>68.25 ± 2.23</td>
<td>8.17 ± 3.29</td>
<td>14 ± 3.59</td>
<td>—</td>
<td>2.4 ± 0.30</td>
<td>1.55 ± 0.23</td>
<td>1.7 ± 0.05</td>
<td>0.83 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>hoja</td>
<td>FM</td>
<td>94.35 ± 0.69</td>
<td>72.07 ± 1.51</td>
<td>13.09 ± 2.31</td>
<td>10.94 ± 0.61</td>
<td>24.04 ± 1.91</td>
<td>2.7 ± 0.78</td>
<td>1.79 ± 0.45</td>
<td>1.00 ± 0.06</td>
<td>0.90 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>tallo</td>
<td>FM</td>
<td>82.63 ± 0.81</td>
<td>60.46 ± 4.51</td>
<td>6.85 ± 1.06</td>
<td>10.09 ± 1</td>
<td>36.93 ± 3.28</td>
<td>2.6 ± 0.76</td>
<td>1.29 ± 0.93</td>
<td>1.00 ± 0.07</td>
<td>0.59 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>tallo</td>
<td>FC</td>
<td>93.72 ± 0.57</td>
<td>65.8 ± 2.6</td>
<td>9.53 ± 3.45</td>
<td>15.98 ± 4.35</td>
<td>—</td>
<td>2.07 ± 0.3</td>
<td>1.24 ± 0.45</td>
<td>1.22 ± 0.15</td>
<td>0.38 ± 0.21</td>
<td></td>
</tr>
<tr>
<td>ARROZ</td>
<td>Oryza sativa</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arrozillo</td>
<td>88.3 ± 1.28</td>
<td>66.8 ± 2.0</td>
<td>14.3 ± 0.82</td>
<td>8.23 ± 0.53</td>
<td>12.45 ± 1.8</td>
<td>2.08 ± 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caja, hecho</td>
<td>MDH</td>
<td>54.2 ± 0.0</td>
<td>46.2 ± 1.8</td>
<td>4.0 ± 0.9</td>
<td>21.1 ± 0.0</td>
<td>1.23 ± 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>barrido industria</td>
<td>—</td>
<td>—</td>
<td>6.9</td>
<td>3.6</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVENA</td>
<td>Avena sativa</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>—</td>
<td>77.0 ± 2.2</td>
<td>17.6 ± 3.7</td>
<td>15.0 ± 3.0</td>
<td>2.5 ± 0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hecho, planta entera</td>
<td>MDH</td>
<td>37.7</td>
<td>45.9</td>
<td>5.8</td>
<td>8.2</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>FM</td>
<td>18.7 ± 1.7</td>
<td>18.5 ± 2.8</td>
<td>4.5 ± 0.9</td>
<td>6.5 ± 1.1</td>
<td>1.8 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>GL</td>
<td>—</td>
<td>70.6</td>
<td>7.5</td>
<td>9.7</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>GP</td>
<td>39.5 ± 3.6</td>
<td>47.2 ± 1.9</td>
<td>8.5 ± 1.2</td>
<td>8.5 ± 1.9</td>
<td>1.5 ± 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>IF</td>
<td>51.2 ± 5.6</td>
<td>5.4 ± 1.6</td>
<td>9.18 ± 1.61</td>
<td>9.18 ± 1.61</td>
<td>51.1 ± 2.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cáscara grano</td>
<td>—</td>
<td>—</td>
<td>50.3</td>
<td>6.4</td>
<td>5.7</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M = MATERIA SECA, DMO = DISESTIBILIDAD "IN VIVO" DE LA MATERIA ORGANICA, PC = PROTEINA CRUZA, FDA = FIBRA DETERGENTE ACIDO, FDN = FIBRA DETERGENTE NEUTRO, EM = ENERGIA METABOLIZABLE, ENH = ENERGIA NETA PARA LACTACION, ENM = ENERGIA NETA PARA MANTENIMIENTO, ENg = ENERGIA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>ESTADO FISIOL.</th>
<th>MS %</th>
<th>DMO %</th>
<th>PC %</th>
<th>CEN12%</th>
<th>FDA %</th>
<th>FDN %</th>
<th>EM</th>
<th>ENI (Mcal/kg MS)</th>
<th>ENm</th>
<th>ENq</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABOSITA</td>
<td></td>
</tr>
<tr>
<td>Adesmia bicolor</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>—</td>
<td>73,36±0,3</td>
<td>18,58±1,34</td>
<td>12,73±1,51</td>
<td>20,05±6,35</td>
<td>49,19±27,9</td>
<td>2,6±0,04</td>
<td>1,76±0,2</td>
<td>1,76±0,02</td>
<td>1,25±0,03</td>
</tr>
<tr>
<td>BROMUS</td>
<td></td>
</tr>
<tr>
<td>Bromus caespitoseus</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>—</td>
<td>62,4±1</td>
<td>13,1±1</td>
<td>7,9±1</td>
<td>—</td>
<td>—</td>
<td>2,1</td>
<td>1,3 ±1</td>
<td>1,3 ±1</td>
<td>0,71 ±1</td>
</tr>
<tr>
<td>plántula entera</td>
<td>FM</td>
<td>—</td>
<td>55,6±1</td>
<td>6,0±1</td>
<td>6,0±1</td>
<td>—</td>
<td>—</td>
<td>1,9</td>
<td>1,2</td>
<td>1,1</td>
<td>0,53 ±1</td>
</tr>
<tr>
<td>planta entera</td>
<td>GP</td>
<td>—</td>
<td>53,33±3,47</td>
<td>12,49±1,01</td>
<td>10,4±0,98</td>
<td>—</td>
<td>1,66±0,4</td>
<td>0,93±0,6</td>
<td>0,72±0,5</td>
<td>0,16±0,35</td>
<td></td>
</tr>
<tr>
<td>BROMUS</td>
<td></td>
</tr>
<tr>
<td>Bromus caespitoseus</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>—</td>
<td>66,33±9,3</td>
<td>22,87±0,20</td>
<td>14,43±2,98</td>
<td>—</td>
<td>—</td>
<td>1,98±0,4</td>
<td>1,10±0,4</td>
<td>1,10±0,3</td>
<td>0,55±0,5</td>
</tr>
<tr>
<td>planta entera</td>
<td>FM</td>
<td>—</td>
<td>51,32±1,05</td>
<td>19,5±1</td>
<td>12,4±1</td>
<td>—</td>
<td>1,05</td>
<td>1,1 ±1</td>
<td>1,1 ±1</td>
<td>0,55 ±1</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>GP</td>
<td>—</td>
<td>51,21±12,12</td>
<td>17,11±3,56</td>
<td>12,51±0,75</td>
<td>—</td>
<td>1,69±0,6</td>
<td>1,09±0,2</td>
<td>1,05±0,5</td>
<td>0,48±0,9</td>
<td></td>
</tr>
<tr>
<td>CAMPO NATURAL</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>—</td>
<td>55,3±2,7</td>
<td>11,7±1,1</td>
<td>9±0,6</td>
<td>—</td>
<td>—</td>
<td>1,99±0,09</td>
<td>1,1±0,05</td>
<td>1,0±0,05</td>
<td>0,46±0,02</td>
</tr>
<tr>
<td></td>
<td>planta entera</td>
<td>paja</td>
<td>pasilla</td>
<td>VG</td>
<td>paja</td>
<td>pasilla</td>
<td>VG</td>
<td>paja</td>
<td>pasilla</td>
<td>VG</td>
<td>paja</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>planta entera</td>
<td>MAD</td>
<td>—</td>
<td>32,0±4,4</td>
<td>28</td>
<td>—</td>
<td>12±1,2</td>
<td>28</td>
<td>—</td>
<td>1,2±0,14</td>
<td>25</td>
<td>0,7±0,08</td>
</tr>
<tr>
<td>planta entera</td>
<td>GM</td>
<td>—</td>
<td>1,7</td>
<td>1</td>
<td>25,7</td>
<td>1</td>
<td>3,1</td>
<td>1</td>
<td>6,0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>caña de azúcar</td>
<td>S. officinarum</td>
<td>—</td>
<td>54,5±1,43</td>
<td>2</td>
<td>60,0±2,47</td>
<td>2</td>
<td>1,29±0,1</td>
<td>2</td>
<td>9,1±5,45</td>
<td>2</td>
<td>120,8±4,69</td>
</tr>
<tr>
<td>sugoza</td>
<td>—</td>
<td>92,6±4,7</td>
<td>1</td>
<td>23,7</td>
<td>1</td>
<td>30,0</td>
<td>1</td>
<td>4,9</td>
<td>2</td>
<td>1,7</td>
<td>27,2</td>
</tr>
<tr>
<td>bacteria</td>
<td>S. officinarum</td>
<td>—</td>
<td>54,5±1,43</td>
<td>2</td>
<td>60,0±2,47</td>
<td>2</td>
<td>1,29±0,1</td>
<td>2</td>
<td>9,1±5,45</td>
<td>2</td>
<td>120,8±4,69</td>
</tr>
<tr>
<td>cebada</td>
<td>H. vulgare</td>
<td>—</td>
<td>88,3±0,05</td>
<td>2</td>
<td>85,8±0,1</td>
<td>2</td>
<td>11,4±0,6</td>
<td>2</td>
<td>2,5±0,1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>grano</td>
<td>GM</td>
<td>—</td>
<td>70,1±2,05</td>
<td>3</td>
<td>12,5±0,05</td>
<td>3</td>
<td>1±0,71</td>
<td>3</td>
<td>—</td>
<td>2,5±0,0</td>
<td>3</td>
</tr>
<tr>
<td>hoja</td>
<td>VEG</td>
<td>—</td>
<td>80,3±0,57</td>
<td>3</td>
<td>5,5±0,2</td>
<td>3</td>
<td>8,1±0,65</td>
<td>3</td>
<td>—</td>
<td>2,4±0,0</td>
<td>3</td>
</tr>
<tr>
<td>tallo</td>
<td>VEG</td>
<td>—</td>
<td>80,3±0,57</td>
<td>3</td>
<td>5,5±0,2</td>
<td>3</td>
<td>8,1±0,65</td>
<td>3</td>
<td>—</td>
<td>2,4±0,0</td>
<td>3</td>
</tr>
<tr>
<td>hoja</td>
<td>FC</td>
<td>—</td>
<td>73,0±2,8</td>
<td>3</td>
<td>11,2±0,14</td>
<td>3</td>
<td>12,2±0,46</td>
<td>3</td>
<td>—</td>
<td>2,2±0,0</td>
<td>3</td>
</tr>
<tr>
<td>tallo</td>
<td>FC</td>
<td>—</td>
<td>65,4±3,84</td>
<td>3</td>
<td>3,6±0,18</td>
<td>3</td>
<td>7,0±0,5</td>
<td>3</td>
<td>—</td>
<td>1,6±0,0</td>
<td>3</td>
</tr>
</tbody>
</table>

MS = MATERIA SECA. DINO = INGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGÁNICA. PC = PROTEINA CRUZADA. FDA = PIPA DETERGENTE ACIDO. FDN = PIPA DETERGENTE NELTRIO. EM = ENERGÍA METABOLIZABLE. ENH = ENERGÍA NETA PARA LACTACIÓN. ENV = ENERGÍA NETA PARA MANTENIMIENTO. ENg = ENERGÍA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>ESTADO FISIOL.</th>
<th>MS</th>
<th>DMO</th>
<th>PC</th>
<th>CENIZA</th>
<th>FDA</th>
<th>FDN</th>
<th>EM</th>
<th>ENI</th>
<th>ENm</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Entera</td>
<td>GP</td>
<td>64.2±2.12</td>
<td>6</td>
<td>7.88±1.01</td>
<td>8</td>
<td>11.6±1.42</td>
<td>6</td>
<td>1.68±0.7</td>
<td>3</td>
<td>1.13±0.6</td>
<td>3</td>
</tr>
<tr>
<td>Fareso</td>
<td></td>
<td></td>
<td>34.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensilaje</td>
<td>VEG-IF</td>
<td>16.6</td>
<td>66.4</td>
<td>11.3</td>
<td>14</td>
<td></td>
<td></td>
<td>2.2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>FM</td>
<td>26.7</td>
<td>66.7</td>
<td>8.2</td>
<td>13.6</td>
<td></td>
<td></td>
<td>2.2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>GP</td>
<td>23.8</td>
<td>64.5</td>
<td>8.8</td>
<td>12</td>
<td></td>
<td></td>
<td>2.1</td>
<td>1.3</td>
<td>1.3</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>41.5</td>
<td>56.8</td>
<td>6.1</td>
<td>13.4</td>
<td></td>
<td></td>
<td>1.9</td>
<td>1.1</td>
<td>1.0</td>
<td>0.48</td>
</tr>
<tr>
<td>Paja, Fardos</td>
<td>MAD</td>
<td>90.8±0.5</td>
<td>51.3±1.1</td>
<td>4.2±0.6</td>
<td>8.8±1.4</td>
<td></td>
<td></td>
<td>1.7±0.04</td>
<td>2</td>
<td>1.0±0.02</td>
<td>2</td>
</tr>
<tr>
<td>Residuo Maquinación</td>
<td></td>
<td>87.93</td>
<td>40.84</td>
<td>5.13</td>
<td>11.21</td>
<td>36.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITRUS</td>
<td>Citrus spp.</td>
<td></td>
</tr>
<tr>
<td>Expeller</td>
<td></td>
<td>93.6±3.2</td>
<td>65.7±3.13</td>
<td>5.2±1.6</td>
<td>16.2±7.0</td>
<td></td>
<td></td>
<td>3.3±0.13</td>
<td>2</td>
<td>1.6±0.08</td>
<td>2</td>
</tr>
<tr>
<td>CHIRCA</td>
<td>Eupatorium bunifolium</td>
<td></td>
</tr>
<tr>
<td>Hojas</td>
<td>VEG</td>
<td></td>
<td>34.2</td>
<td></td>
<td>10.7</td>
<td>8.1</td>
<td></td>
<td>1.2</td>
<td>0.7</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

Las MS, DMO, PC, CENIZA, FDA, FDN, EM, ENI, ENm y ENg son valores en porcentaje y kcal/kg MS, respectivamente.
<table>
<thead>
<tr>
<th>CHLORIS</th>
<th>VEG</th>
<th>IF</th>
<th>FC</th>
<th>DACTYLIS</th>
<th>VEG</th>
<th>FC</th>
<th>ERAGROSTIS</th>
<th>VEG</th>
<th>EUCALIPTUS</th>
<th>VEG</th>
<th>PALARIS</th>
<th>VEG</th>
<th>IF</th>
<th>DMO</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choris gayana planta entera</td>
<td>64.8±1.81</td>
<td>10</td>
<td>1.26±0.34</td>
<td>6.9±0.2</td>
<td>2</td>
<td>62.7±0.1</td>
<td>10</td>
<td>1.15±0.2</td>
<td>6.5±0.2</td>
<td>1</td>
<td>73±0.5</td>
<td>10</td>
<td>1.10±0.1</td>
<td>6.0±0.2</td>
<td></td>
</tr>
<tr>
<td>Choris gayana planta entera</td>
<td>14±0.41</td>
<td>10</td>
<td>1.4±0.1</td>
<td>23.8±0.1</td>
<td>2</td>
<td>12.8±2.3</td>
<td>10</td>
<td>12.8±2.3</td>
<td>25.5±2.5</td>
<td>1</td>
<td>29</td>
<td>10</td>
<td>1.1±0.1</td>
<td>1.1±0.1</td>
<td></td>
</tr>
<tr>
<td>Choris gayana planta entera</td>
<td>33.1±0.62</td>
<td>10</td>
<td>1.3±0.1</td>
<td>37.3±1.1</td>
<td>2</td>
<td>11.9±0.5</td>
<td>10</td>
<td>11.9±0.5</td>
<td>2</td>
<td>14.3±1.2</td>
<td>10</td>
<td>1.1±0.1</td>
<td>1.1±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choris gayana planta entera</td>
<td>61±0.52</td>
<td>10</td>
<td>1.1±0.1</td>
<td>6.9±0.2</td>
<td>2</td>
<td>12.8±2.3</td>
<td>10</td>
<td>12.8±2.3</td>
<td>25.5±2.5</td>
<td>1</td>
<td>29</td>
<td>10</td>
<td>1.1±0.1</td>
<td>1.1±0.1</td>
<td></td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>ESTADO FISIOL.</td>
<td>MS</td>
<td>DNO</td>
<td>PC</td>
<td>CENIZA</td>
<td>FDA</td>
<td>FDN</td>
<td>EN</td>
<td>EN</td>
<td>ENm</td>
<td>ENg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FESTUCA</td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>55.37±6.07</td>
<td>18</td>
<td>14.07±5.63</td>
<td>18</td>
<td>13.26±2.30</td>
<td>18</td>
<td>32.33±1.27</td>
<td>5</td>
<td>54.35±4.3</td>
<td>5</td>
<td>1.09±0.06</td>
<td>5</td>
<td>1.10±0.04</td>
<td>5</td>
</tr>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>50.7±0.7</td>
<td>4</td>
<td>15.2±0.5</td>
<td>4</td>
<td>9.4±0.6</td>
<td>4</td>
<td>18.1</td>
<td>1</td>
<td>49.67</td>
<td>4</td>
<td>2.22±0.7</td>
<td>4</td>
<td>1.39±0.7</td>
<td>4</td>
</tr>
<tr>
<td>planta entera</td>
<td>GM</td>
<td>55.7</td>
<td>4</td>
<td>8.6</td>
<td>4</td>
<td>11.9</td>
<td>4</td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
<td>1.0</td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>frasco</td>
<td>FM</td>
<td>57.3±0.2</td>
<td>3</td>
<td>14.5±1.6</td>
<td>3</td>
<td>9.1±1.7</td>
<td>3</td>
<td></td>
<td></td>
<td>1.57±0.2</td>
<td></td>
<td>1.0±0.2</td>
<td></td>
<td>0.9±0.2</td>
<td></td>
</tr>
<tr>
<td>GIRASOL</td>
<td></td>
</tr>
<tr>
<td>Helianthus annuus</td>
<td></td>
</tr>
<tr>
<td>expeler</td>
<td></td>
<td>90.33±2.49</td>
<td>3</td>
<td>84.55±2.52</td>
<td>3</td>
<td>31.11±3.99</td>
<td>3</td>
<td>7.5±0.32</td>
<td>3</td>
<td>26.36±0.06</td>
<td>3</td>
<td>1.97±0.80</td>
<td>3</td>
<td>1.16±0.8</td>
<td>3</td>
</tr>
<tr>
<td>cáscara</td>
<td></td>
<td>90</td>
<td>1</td>
<td>4.44</td>
<td>1</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLCUS</td>
<td></td>
</tr>
<tr>
<td>Holcus lanatus</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>66.9±8.21</td>
<td>13</td>
<td>24.07±0.33</td>
<td>13</td>
<td>13±2</td>
<td>13</td>
<td></td>
<td></td>
<td>2.53</td>
<td></td>
<td>1.52</td>
<td></td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>66.16±1.63</td>
<td>4</td>
<td>21.03±0.53</td>
<td>4</td>
<td>12.15±1.14</td>
<td>4</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>1.5</td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>FM</td>
<td>57.3±10.59</td>
<td>5</td>
<td>13.4±4.77</td>
<td>5</td>
<td>11.49±1.57</td>
<td>5</td>
<td></td>
<td></td>
<td>2.2</td>
<td></td>
<td>1.3</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>
KIKUYO
Pennisetum clandestinum

<table>
<thead>
<tr>
<th>Planta Entera</th>
<th>VEG</th>
<th>65.25±6.05</th>
<th>14.58±2.78</th>
<th>13.25±1.64</th>
<th>30.88±2.01</th>
<th>60.95±4.52</th>
<th>1.95±0.38</th>
<th>1.17±0.59</th>
<th>1.10±0.39</th>
<th>3.56±0.98</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Planta Cálida</th>
<th>FC</th>
<th>64.2±6.47</th>
<th>14.14±1.5</th>
<th>20.66±1.2</th>
<th>33.75±3.96</th>
<th>65.8±6.96</th>
<th>2.03±0.78</th>
<th>1.23±0.89</th>
<th>1.08±0.75</th>
<th>6.42±0.67</th>
</tr>
</thead>
</table>

LINO
*Linnen tilactis*³

<table>
<thead>
<tr>
<th>Harina</th>
<th>31.8</th>
<th>5.5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Paño</th>
<th>MAD</th>
<th>41.40</th>
<th>2.23</th>
<th>4.43</th>
<th>7.15</th>
<th>79.50</th>
<th>1.39</th>
<th>0.83</th>
<th>0.90</th>
<th>0.20</th>
</tr>
</thead>
</table>

LOTUS
Lotus corniculatus

<table>
<thead>
<tr>
<th>Planta Entera</th>
<th>VEG</th>
<th>60.3±7.07</th>
<th>14.56±0.09</th>
<th>10.86±1.14</th>
<th>28.62±0.2</th>
<th>52.41±6.6</th>
<th>1.89±0.8</th>
<th>1.13±0.8</th>
<th>0.99±0.5</th>
<th>0.51±0.60</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Planta Enseada</th>
<th>IF</th>
<th>68.3±12.67</th>
<th>14.73±0.59</th>
<th>9.1±0.72</th>
<th>38.75</th>
<th>62.88</th>
<th>2.17±0.9</th>
<th>1.5±0.9</th>
<th>1.5±0.9</th>
<th>0.7±0.9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Planta Enseada, Deshidratada</th>
<th>FM</th>
<th>88.3±5.0</th>
<th>57.3±0.2</th>
<th>14.5±1.5</th>
<th>9.1±1.7</th>
<th>—</th>
<th>2.1±0.4</th>
<th>1.3±0.3</th>
<th>1.3±0.3</th>
<th>0.7±0.11</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Planta Cálida</th>
<th>FC</th>
<th>60.5±5.52</th>
<th>14.05±1.07</th>
<th>8.66±0.53</th>
<th>35.24±3.15</th>
<th>55.49±5.96</th>
<th>1.89±0.79</th>
<th>1.4±0.9</th>
<th>1.0±0.78</th>
<th>0.29±0.50</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heno</th>
<th>FM</th>
<th>87.1±1.5</th>
<th>57.3±0.2</th>
<th>14.5±1.6</th>
<th>9.1±1.7</th>
<th>—</th>
<th>1.9±0.0</th>
<th>1.2±0.0</th>
<th>1.1±0.0</th>
<th>0.52±0.0</th>
</tr>
</thead>
</table>

MS = MATERIA SECA, DMG = DIGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGANICA, PC = PROTEÍNA CRUDA, FDA = FIBRA DETERGENTE ACIDO, FDN = FIBRA DETERGENTE NEUTRO, EM = ENERGÍA METABOLIZABLE, ENI = ENERGÍA NETA PARA LACTACIÓN, ENM = ENERGÍA NETA PARA MANTENIMIENTO, ENH = ENERGÍA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCION ESTADO FISIOLOGICO</th>
<th>GP</th>
<th>FDN</th>
<th>CENIZA</th>
<th>PC</th>
<th>DIA</th>
<th>RS</th>
<th>ENM</th>
<th>EN</th>
<th>EIN</th>
<th>ENH</th>
<th>EOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIZ 50% mas</td>
<td>22.6 ± 0.12</td>
<td>86.0 ± 0.12</td>
<td>12.1 ± 1.1</td>
<td>93.5 ± 0.6</td>
<td>10.5 ± 0.6</td>
<td>34.1 ± 0.1</td>
<td>0.3 ± 0.0</td>
<td>0.03 ± 0.00</td>
<td>1.0 ± 0.0</td>
<td>1.5 ± 0.0</td>
<td>1.0 ± 0.0</td>
</tr>
<tr>
<td>hoja</td>
<td>41.0 ± 0.2</td>
<td>87.4 ± 0.09</td>
<td>10.5 ± 0.5</td>
<td>34.1 ± 0.1</td>
<td>10.8 ± 0.4</td>
<td>1.6 ± 0.0</td>
<td>0.17 ± 0.00</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>hilo</td>
<td>18.2 ± 0.4</td>
<td>20.5 ± 0.2</td>
<td>7.7 ± 0.1</td>
<td>25.4 ± 1.4</td>
<td>108.0 ± 2</td>
<td>0.9 ± 0.0</td>
<td>0.2 ± 0.00</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>hueso</td>
<td>26.0 ± 2.3</td>
<td>72.4 ± 0.1</td>
<td>2.2 ± 0.0</td>
<td>14.0 ± 0.0</td>
<td>6.0 ± 0.0</td>
<td>8.0 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>glucen laced</td>
<td>26.2 ± 1.1</td>
<td>62.5 ± 0.8</td>
<td>1.4 ± 0.0</td>
<td>2.1 ± 0.0</td>
<td>1.4 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>entalla</td>
<td>28.0 ± 3.5</td>
<td>68.2 ± 5.7</td>
<td>1.2 ± 0.0</td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Las unidades son en %, con una desviación estándar de ±0.6.
MARGARITA DE PIRIA
Coleostephus myconis

<table>
<thead>
<tr>
<th>Vegetación</th>
<th>MAD</th>
<th>21</th>
<th>5.3</th>
<th>7</th>
<th>1.04</th>
<th>0.4</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta entera</td>
<td>FC</td>
<td>69.96±2.53</td>
<td>12.85±3.55</td>
<td>2.83±0.55</td>
<td>1.86±0.9</td>
<td>1.12±0.9</td>
<td>0.98±0.9</td>
</tr>
</tbody>
</table>

PAJA BRAVA
Panicum praelitii

<table>
<thead>
<tr>
<th>Vegetación</th>
<th>MAD</th>
<th>1.5</th>
<th>1.1</th>
<th>1.04</th>
<th>0.4</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta entera</td>
<td>FC</td>
<td>69.96±2.53</td>
<td>12.85±3.55</td>
<td>2.83±0.55</td>
<td>1.86±0.9</td>
<td>1.12±0.9</td>
</tr>
</tbody>
</table>

PAJA MANSa
Paspalum quadrilatum

<table>
<thead>
<tr>
<th>Vegetación</th>
<th>MAD</th>
<th>1.5</th>
<th>1.1</th>
<th>1.04</th>
<th>0.4</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta entera</td>
<td>FC</td>
<td>69.96±2.53</td>
<td>12.85±3.55</td>
<td>2.83±0.55</td>
<td>1.86±0.9</td>
<td>1.12±0.9</td>
</tr>
</tbody>
</table>

Paspalum
Paspalum dilatatum

<table>
<thead>
<tr>
<th>Vegetación</th>
<th>MAD</th>
<th>1.5</th>
<th>1.1</th>
<th>1.04</th>
<th>0.4</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta entera</td>
<td>FC</td>
<td>69.96±2.53</td>
<td>12.85±3.55</td>
<td>2.83±0.55</td>
<td>1.86±0.9</td>
<td>1.12±0.9</td>
</tr>
</tbody>
</table>

MS = MATERIA SECA, **DMO** = DIGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGANICA, **PC** = PROTEINA CRUDA, **FDA** = FIBRA DETERGENTE ACIDO, **FDN** = FIBRA DETERGENTE NEUTRO, **EM** = ENERGIA METABOLIZABLE, **ENH** = ENERGIA NETA PARA LACTACION, **ENm** = ENERGIA NETA PARA MANTENIMIENTO, **ENg** = ENERGIA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>ESTADO FISIOL</th>
<th>MS %</th>
<th>DMO %</th>
<th>PC %</th>
<th>CENIZA %</th>
<th>FDA %</th>
<th>FDN %</th>
<th>EM</th>
<th>ENI</th>
<th>ENm (Mcal/kg MS)</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASPALUM</td>
<td></td>
</tr>
<tr>
<td>Paspalum notatum</td>
<td>VEG</td>
<td>43.5</td>
<td>7.75</td>
<td>10.3</td>
<td>41.73</td>
<td>78.33</td>
<td>1.48</td>
<td>0.89</td>
<td>0.56</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>54.5</td>
<td>11.75</td>
<td>12.57</td>
<td>37.12</td>
<td>70.95</td>
<td>1.54</td>
<td>0.93</td>
<td>0.70</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PASTOELEFANTE</td>
<td></td>
</tr>
<tr>
<td>Pennisetum purpureum</td>
<td>VEG</td>
<td>59.22</td>
<td>9.80</td>
<td>8.08</td>
<td>1.96</td>
<td>44.26</td>
<td>0.92</td>
<td>0.21</td>
<td>0.25</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>52.85</td>
<td>5.06</td>
<td>8.04</td>
<td>1.83</td>
<td>44.26</td>
<td>0.92</td>
<td>0.21</td>
<td>0.25</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PESCA</td>
<td></td>
</tr>
<tr>
<td>Harina</td>
<td>90.46</td>
<td>76.85</td>
<td>60.44</td>
<td>23.29</td>
<td>1.9</td>
<td>1.14</td>
<td>1.05</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PRADERA</td>
<td></td>
</tr>
<tr>
<td>Heno TR, TB, Festuca</td>
<td></td>
<td>89.6</td>
<td>48.1</td>
<td>12.0</td>
<td>8.2</td>
<td>1.6</td>
<td>1.0</td>
<td>0.3</td>
<td>0.22</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Heno TR, Raigras</td>
<td>83.8, 48.1</td>
<td>50.4</td>
<td>13.0</td>
<td>11.1</td>
<td>1.6</td>
<td>1.0</td>
<td>0.3</td>
<td>0.25</td>
<td>0.08</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Heno TR, Lotus</td>
<td></td>
<td>87.6</td>
<td>51.4</td>
<td>18.3</td>
<td>10.4</td>
<td>1.7</td>
<td>1.0</td>
<td>0.3</td>
<td>0.30</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Heno TR, alfalfa</td>
<td></td>
<td>86.4</td>
<td>60.7</td>
<td>20.9</td>
<td>11.7</td>
<td>2.0</td>
<td>1.2</td>
<td>1.1</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heno</td>
<td>TR, TB, Lotus</td>
<td>88.7</td>
<td>56.7</td>
<td>21.9</td>
<td>9.4</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>1.1</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Heno</td>
<td>Lotus, Raigrás</td>
<td>67.1±3.4</td>
<td>46.6±4.0</td>
<td>11.1±0.9</td>
<td>9.2±0.1</td>
<td>—</td>
<td>—</td>
<td>1.5±0.13</td>
<td>0.9±0.08</td>
<td>0.7±0.06</td>
<td>0.15±0.01</td>
</tr>
<tr>
<td>Heno</td>
<td>TR, Lotus, Raigrás</td>
<td>78.1±0.05</td>
<td>48.8±0.1</td>
<td>10.2±0.2</td>
<td>11±0.2</td>
<td>—</td>
<td>—</td>
<td>1.5±0.0</td>
<td>0.9±0.0</td>
<td>0.7±0.0</td>
<td>0.13±0.0</td>
</tr>
</tbody>
</table>

RAIGRÁS
Lotium multiflorum

planta entera	VEG	—	70.11±2.1	12,72±6.6	13±1.41	—	—	2.23±0.78	1.34±0.8	1.4±0.67	0.79±0.85	5
planta entera	IF	—	50.86±4.27	11.58±2.01	9.7±1.49	—	—	1.56±0.5	0.9±0.48	0.72±0.45	0.15±0.45	5
planta entera	FM	—	76.02 1	—	12.23 1	—	—	2.43	1.46	1.49	0.89	5
ensilaje	VEG	—	80.94±1.18	21.09±0.59	16.58±1.82	—	—	2.6±0.45	1.56±0.68	1.67±0.35	0.92±0.25	5

REMOLACHA
Beta vulgaris

| expeller, pulpa | — | 97.4±0.02 | 86.7 | 7.6±0.8 | 3.4±0.3 | — | — | 3.2 | 1.9 | 2.2 | 1.52 | 5 |

SERRADELLA
Omithopus spp.

| planta entera | VEG | — | 60.13±4.54 | 23.25±3.86 | 9.77±0.99 | 30.59±6.97 | 50.36±3.67 | 1.81±0.45 | 1.08±0.6 | 0.99±0.45 | 0.4±0.35 | 12 |
| planta entera | IF | — | 72.09 1 | — | 7.96 1 | — | — | 2.4 | 1.5 | 1.4 | 1.05 | 1 |

Legends:
- **MS** = MATERIA SECA.
- **DMO** = DIGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGANICA.
- **PC** = PROTEINA CRUDA.
- **FDA** = FIBRA DETERGENTE ACIDO.
- **FDN** = FIBRA DETERGENTE NEUTRO.
- **EM** = ENERGÍA METABOLIZABLE.
- **ENL** = ENERGÍA NETA PARA LACTACIÓN.
- **ENm** = ENERGÍA NETA PARA MANTENIMIENTO.
- **ENG** = ENERGÍA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN ESTADO FISIOL.</th>
<th>DMO %</th>
<th>RC %</th>
<th>CÉNZA %</th>
<th>FDN %</th>
<th>EM %</th>
<th>ENg %</th>
</tr>
</thead>
<tbody>
<tr>
<td>planta entera</td>
<td>58.3</td>
<td>13.8</td>
<td>47.8</td>
<td>3.7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>hierba</td>
<td>43.7</td>
<td>11.6</td>
<td>5.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SETAURA</td>
<td>53.5</td>
<td>26.8</td>
<td>11.0</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Glicéridos grasos</td>
<td>90.1</td>
<td>51.3</td>
<td>10.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>rastreo continuo</td>
<td>77.1</td>
<td>1.7</td>
<td>38.0</td>
<td>0.7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>rastreo anual</td>
<td>60.1</td>
<td>2.2</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

planta entera	VEG	6.8	1.7	1.7	1	1
hierba	46.0	1.8	0.8	0.8	1	1
SQUA	89.1	51.8	10.3	1	1	1
rastreo continuo	77.1	1.7	38.0	0.7	4	4
rastreo anual	60.1	2.2	2.2	2	2	2

planta entera	19.7	8.9	8.9	1	1	1
hierba	5.0	4.1	4.1	1	1	1
SQUA	89.1	51.8	10.3	1	1	1
rastreo continuo	77.1	1.7	38.0	0.7	4	4
rastreo anual	60.1	2.2	2.2	2	2	2

planta entera	19.7	8.9	8.9	1	1	1
hierba	5.0	4.1	4.1	1	1	1
rastreo continuo	77.1	1.7	38.0	0.7	4	4
rastreo anual	60.1	2.2	2.2	2	2	2

planta entera	19.7	8.9	8.9	1	1	1
hierba	5.0	4.1	4.1	1	1	1
SQUA	89.1	51.8	10.3	1	1	1
rastreo continuo	77.1	1.7	38.0	0.7	4	4
rastreo anual	60.1	2.2	2.2	2	2	2

planta entera	19.7	8.9	8.9	1	1	1
hierba	5.0	4.1	4.1	1	1	1
SQUA	89.1	51.8	10.3	1	1	1
rastreo continuo	77.1	1.7	38.0	0.7	4	4
rastreo anual	60.1	2.2	2.2	2	2	2
SORGO DE ALEPO						
<table>
<thead>
<tr>
<th>Sorghum halopense</th>
</tr>
</thead>
<tbody>
<tr>
<td>heno, planta entera</td>
</tr>
</tbody>
</table>

| SORGO FORRAJERO
<table>
<thead>
<tr>
<th>Sorghum sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>planta entera</td>
</tr>
<tr>
<td>planta entera</td>
</tr>
<tr>
<td>hoja</td>
</tr>
<tr>
<td>tallo</td>
</tr>
<tr>
<td>planta entera</td>
</tr>
<tr>
<td>hoja</td>
</tr>
<tr>
<td>tallo</td>
</tr>
<tr>
<td>pierna entera</td>
</tr>
<tr>
<td>hoja</td>
</tr>
<tr>
<td>panza</td>
</tr>
</tbody>
</table>

Legenda:
- **MS** = MATERIA SECA
- **DMC** = DIGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGANICA
- **PC** = PROTEINA CRUDA
- **FDA** = FIBRA DETERGENTE ACIDO
- **FDN** = FIBRA DETERGENTE NEUTRO
- **EM** = ENERGIA METABOLIZABLE
- **ENH** = ENERGIA NETA PARA LACTACION
- **ENM** = ENERGIA NETA PARA MANTENIMIENTO
- **ENG** = ENERGIA NETA PARA MANTENIMIENTO...
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>ESTADO FISIOL.</th>
<th>MS %</th>
<th>DMO %</th>
<th>PC %</th>
<th>CENIZA %</th>
<th>FDA %</th>
<th>FDN %</th>
<th>EM</th>
<th>ENI (Mca Ukg MS)</th>
<th>ENm</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td>planta entera</td>
<td>GL/GP</td>
<td>57.7±4.03</td>
<td>62.2±2.53</td>
<td>10.1±1.05</td>
<td>2.0±0.12</td>
<td>1.2±0.07</td>
<td>1.2±0.07</td>
<td>0.60±0.04</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>planta entera</td>
<td>GP</td>
<td>60.9±3.96</td>
<td>5.5±0.9</td>
<td>9.7±1.3</td>
<td>2.1±0.12</td>
<td>1.2±0.07</td>
<td>1.2±0.07</td>
<td>0.60±0.04</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>ensilaje</td>
<td>VEG</td>
<td>24.1</td>
<td>65.5</td>
<td>7.9</td>
<td>8.5</td>
<td>2.3</td>
<td>1.4</td>
<td>1.4</td>
<td>0.63</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje</td>
<td>FC</td>
<td>25.1±2.3</td>
<td>49.4±3.5</td>
<td>5.5±0.9</td>
<td>5.5±0.3</td>
<td>1.6±0.12</td>
<td>1.0±0.07</td>
<td>0.8±0.06</td>
<td>0.25±0.02</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje</td>
<td>CL</td>
<td>31.3</td>
<td>45.8±7.27</td>
<td>5.0±0.62</td>
<td>7.3±2.95</td>
<td>1.3</td>
<td>1.1</td>
<td>0.9</td>
<td>0.38</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje</td>
<td>CL/GP</td>
<td>30.8±1.54</td>
<td>55.3±4.11</td>
<td>4.3±1.46</td>
<td>10.3±1.46</td>
<td>1.6±0.14</td>
<td>1.1±0.08</td>
<td>0.9±0.07</td>
<td>0.35±0.20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje</td>
<td>GP</td>
<td>33.1±1.7</td>
<td>55.8±3.9</td>
<td>4.5±1.4</td>
<td>10.3±1.5</td>
<td>1.6±0.13</td>
<td>1.1±0.08</td>
<td>1.0±0.07</td>
<td>0.45±0.03</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje</td>
<td>GP/GM</td>
<td>30.8±1.5</td>
<td>47.3±6.1</td>
<td>4.5±0.7</td>
<td>10.9±1.3</td>
<td>1.5±0.20</td>
<td>1.0±0.06</td>
<td>0.7±0.06</td>
<td>0.18±0.02</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

SORGO FORRAJE + MAÍZ

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>ESTADO</th>
<th>MS %</th>
<th>DMO %</th>
<th>PC %</th>
<th>CENIZA %</th>
<th>FDA %</th>
<th>FDN %</th>
<th>EM</th>
<th>ENI (Mca Ukg MS)</th>
<th>ENm</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ensilaje, con 20% maíz</td>
<td>GL</td>
<td>27.7</td>
<td>52.4</td>
<td>6.7</td>
<td>10.5</td>
<td>1.7</td>
<td>1.0</td>
<td>0.9</td>
<td>0.33</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje, con 10% maíz</td>
<td>GL</td>
<td>24.6</td>
<td>44.1</td>
<td>6.4</td>
<td>6.7</td>
<td>1.5</td>
<td>1.0</td>
<td>0.6</td>
<td>0.11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ensilaje, con Masa</td>
<td>GL</td>
<td>31.5</td>
<td>46.1</td>
<td>6.2</td>
<td>12.5</td>
<td>1.4</td>
<td>0.3</td>
<td>0.6</td>
<td>0.07</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ingredient</td>
<td>Sorgo granifero</td>
<td>Sorgo maíz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grano</td>
<td>33.8±0.1</td>
<td>27.1±0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planta entera</td>
<td>67.2±0.1</td>
<td>53.4±0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensilaje</td>
<td>22.1±0.1</td>
<td>22.3±0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastrojo, hoja</td>
<td>16.3±0.1</td>
<td>14.0±0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastrojo, tallo</td>
<td>14.0±0.2</td>
<td>10.0±0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastrojo, ensilaje</td>
<td>22.0±0.2</td>
<td>10.0±0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legends:
- **MS** = MATERIA SECA
- **DMO** = DIGESTIBILIDAD IN VITRO DE LA MATERIA ORGANICA
- **PC** = PROTEINA CRUDA
- **FDA** = FIBRA DETERGENTE ACIDO
- **FDN** = FIBRA DETERGENTE NEUTRO
- **EM** = ENERGÍA METABOLIZABLE
- **ENI** = ENERGÍA NETA PARA LACTACIÓN
- **ENm** = ENERGÍA NETA PARA MANTENIMIENTO
- **ENg** = ENERGÍA NETA PARA MAINTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>ESTADO</th>
<th>MS</th>
<th>DMO</th>
<th>PC</th>
<th>CENIZA</th>
<th>FDA</th>
<th>FDN</th>
<th>EM</th>
<th>ENI</th>
<th>ENm</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUDANGRASS</td>
<td>Sorghum sudanense</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>64,9±2,8</td>
<td>13,0±1,2</td>
<td>8,8±0,7</td>
<td>2,2±0,06</td>
<td>1,3±0,05</td>
<td>1,4±0,05</td>
<td>0,78±0,03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>FM</td>
<td>57,9±2,5</td>
<td>6,5±1,3</td>
<td>9,5±1,2</td>
<td>1,9±0,08</td>
<td>1,2±0,05</td>
<td>1,1±0,05</td>
<td>0,53±0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>GL-GP</td>
<td>54,7±2,7</td>
<td>6,2±0,9</td>
<td>9,6±0,9</td>
<td>1,8±0,08</td>
<td>1,1±0,05</td>
<td>1,0±0,05</td>
<td>0,43±0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>FC</td>
<td>58,9±2,5</td>
<td>9,5±0,5</td>
<td>10,0±0,4</td>
<td>2,0±0,06</td>
<td>1,2±0,05</td>
<td>1,1±0,05</td>
<td>0,56±0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>GL</td>
<td>56,2±3,75</td>
<td>7,6±2,06</td>
<td>10,0±0,75</td>
<td>39,4±2,94</td>
<td>1,8±0,07</td>
<td>1,1±0,04</td>
<td>0,38±0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>GP</td>
<td>49,6±0,2</td>
<td>4,3±0,3</td>
<td>10,0±0,5</td>
<td>1,6±0,01</td>
<td>1,0±0,0</td>
<td>0,8±0,0</td>
<td>0,24±0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREDOL BLANCO</td>
<td>Trifolium repens</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>25,4±2,7</td>
<td>17,2±1,0</td>
<td>14,1±2,2</td>
<td>20,0±0,01</td>
<td>1,2±0,01</td>
<td>1,2±0,01</td>
<td>0,60±0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ensilaje, premarch.</td>
<td>VEG</td>
<td>40,8±0,5</td>
<td>18,8±0,1</td>
<td>17,8±0,6</td>
<td>2,0±0,01</td>
<td>1,2±0,01</td>
<td>1,2±0,01</td>
<td>0,60±0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREDOL DE ALEJANDRIA</td>
<td>Trifolium alexandrinum</td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>VEG</td>
<td>68,7±0,4</td>
<td>19,89</td>
<td>13,2±0,02</td>
<td>2,18±0,35</td>
<td>1,31±0,4</td>
<td>1,32±0,30</td>
<td>0,65±0,30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>13,21±1,08</td>
<td>13,33±0,50</td>
<td>1,28±0,60</td>
<td>0,66±0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>FM</td>
<td>11,61±0,64</td>
<td>11,2±0,45</td>
<td>1,19±0,70</td>
<td>0,57±0,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta entera</td>
<td>FC</td>
<td>10,87±0,33</td>
<td>10,92±0,40</td>
<td>1,05±0,60</td>
<td>0,31±0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TREBOL RESUPINATUM
Trifolium resupinatum

<table>
<thead>
<tr>
<th>planta entera</th>
<th>VEG</th>
<th>12,97±0,33</th>
<th>1,51±0,12</th>
<th>1,80±0,05</th>
<th>0,98±0,03</th>
</tr>
</thead>
<tbody>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>12,6±0,44</td>
<td>1,49±0,06</td>
<td>1,59±0,04</td>
<td>0,98±0,04</td>
</tr>
<tr>
<td>planta entera</td>
<td>FM</td>
<td>11,87±0,71</td>
<td>1,36±0,7</td>
<td>1,40±0,45</td>
<td>0,82±0,50</td>
</tr>
<tr>
<td>planta entera</td>
<td>FC</td>
<td>12,3±</td>
<td>1,16</td>
<td>1,10</td>
<td>0,36</td>
</tr>
</tbody>
</table>

TREBOL ROJO
Trifolium pratense

<table>
<thead>
<tr>
<th>planta entera</th>
<th>VEG</th>
<th>8,5±1,24</th>
<th>1,5±0,06</th>
<th>1,6±0,04</th>
<th>0,97±0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>planta entera</td>
<td>IF</td>
<td>8,37±1,36</td>
<td>1,4±0,08</td>
<td>1,4±0,08</td>
<td>0,85±0,06</td>
</tr>
<tr>
<td>planta entera</td>
<td>FM</td>
<td>11,82±0,6</td>
<td>1,3±0,03</td>
<td>1,3±0,03</td>
<td>0,71±0,01</td>
</tr>
<tr>
<td>planta entera</td>
<td>FC</td>
<td>8,07±0,29</td>
<td>1,2±0,09</td>
<td>1,2±0,09</td>
<td>0,59±0,05</td>
</tr>
</tbody>
</table>

Legenda

MS = MATERIA SECA
DMO = DIGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGANICA
PC = PROTEINA CRUDA
FDA = FIBRA DETERGENTE AGIDO
FDN = FIBRA DETERGENTE NEUTRO
EM = ENERGIA METABOLIZABLE
ENI = ENERGIA NETA PARA LACTACION
ENm = ENERGIA NETA PARA MANTENIMIENTO
Eng = ENERGIA NETA PARA MANTENIMIENTO...
<table>
<thead>
<tr>
<th>Descripción Estado</th>
<th>MS</th>
<th>DM</th>
<th>FSIOL</th>
<th>FDN</th>
<th>DPA</th>
<th>ENm</th>
<th>ENg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta entera, deshidratada</td>
<td>82.0±11.1</td>
<td>63.3±0.5</td>
<td>16.5±2.6</td>
<td>5.3±0.5</td>
<td>3.2±0.8</td>
<td>5.2±1.8</td>
<td></td>
</tr>
<tr>
<td>Planta entera</td>
<td>89.5</td>
<td>55.7</td>
<td>11.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frezol</td>
<td>83.0±1.0</td>
<td>55.5±4.9</td>
<td>12.0±3.0</td>
<td>5.3±0.6</td>
<td>3.2±0.8</td>
<td>5.2±1.8</td>
<td></td>
</tr>
<tr>
<td>Frezol</td>
<td>89.5</td>
<td>55.7</td>
<td>11.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEG</td>
<td>64.5±9.1</td>
<td>16.6±4.6</td>
<td>11.3±1.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEG</td>
<td>84.5±4.6</td>
<td>19.6±5.3</td>
<td>9.1±1.7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trebol Subterráneo</td>
<td>89.5</td>
<td>55.7</td>
<td>11.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trebol Vesículoso</td>
<td>84.5±4.6</td>
<td>19.6±5.3</td>
<td>9.1±1.7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Los valores son promedios ± desviación estándar.
<table>
<thead>
<tr>
<th></th>
<th>IF</th>
<th>—</th>
<th></th>
<th>10,66±0,65</th>
<th>9,86±0,59</th>
<th>—</th>
<th>—</th>
<th>2,34±0,45</th>
<th>1,4±0,4</th>
<th>1,4±0,2</th>
<th>0,9±0,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGO</td>
<td></td>
<td></td>
<td>Triticum aestivum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planta ancha</td>
<td>VEG</td>
<td>23,40±1,40</td>
<td>77,09±5,16</td>
<td>19,6±1,36</td>
<td>14,86±0,95</td>
<td>—</td>
<td>—</td>
<td>2,34±0,45</td>
<td>1,4±0,4</td>
<td>1,4±0,2</td>
<td>0,9±0,2</td>
</tr>
<tr>
<td>hoja</td>
<td>VEG</td>
<td>78,93±0,54</td>
<td>15,83±1,04</td>
<td>13,27±1,18</td>
<td>—</td>
<td>—</td>
<td>2,53±0,53</td>
<td>1,52±0,34</td>
<td>1,51±0,3</td>
<td>1,01±0,3</td>
<td></td>
</tr>
<tr>
<td>tallo</td>
<td>VEG</td>
<td>79,10±0,99</td>
<td>8,37±0,99</td>
<td>11,9±1,02</td>
<td>—</td>
<td>—</td>
<td>2,38±0,60</td>
<td>1,42±0,94</td>
<td>1,50±0,70</td>
<td>0,51±0,60</td>
<td></td>
</tr>
<tr>
<td>planta ancha</td>
<td>IF</td>
<td>63,40±4,50</td>
<td>13,6±0,85</td>
<td>16,86±0,95</td>
<td>—</td>
<td>—</td>
<td>2,17±0,80</td>
<td>1,3±0,70</td>
<td>1,3±0,5</td>
<td>0,72±0,45</td>
<td></td>
</tr>
<tr>
<td>hoja</td>
<td>IF</td>
<td>63,90±5,10</td>
<td>4,25±0,35</td>
<td>6,25±0,55</td>
<td>—</td>
<td>—</td>
<td>1,66±0,60</td>
<td>1,0±0,70</td>
<td>0,82±0,55</td>
<td>0,28±0,00</td>
<td></td>
</tr>
<tr>
<td>tallo</td>
<td>IF</td>
<td>65,70±2,18</td>
<td>8,7±0,10</td>
<td>6,85±0,75</td>
<td>—</td>
<td>—</td>
<td>2,07±0,50</td>
<td>1,2±0,60</td>
<td>1,21±0,34</td>
<td>0,44±0,12</td>
<td></td>
</tr>
<tr>
<td>espiga</td>
<td>GL</td>
<td>64,45±2,55</td>
<td>11,63±1,13</td>
<td>16,67±0,24</td>
<td>—</td>
<td>—</td>
<td>2,03±0,45</td>
<td>1,22±0,50</td>
<td>1,02±0,35</td>
<td>0,47±0,00</td>
<td></td>
</tr>
<tr>
<td>planta ancha</td>
<td>GL</td>
<td>52,5±1,78</td>
<td>3,63±0,98</td>
<td>7,8±1,51</td>
<td>—</td>
<td>—</td>
<td>2,5±0,12</td>
<td>0,97±0,34</td>
<td>0,78±0,17</td>
<td>0,20±0,00</td>
<td></td>
</tr>
<tr>
<td>hoja</td>
<td>GL</td>
<td>65,63±1,26</td>
<td>87,21±1,81</td>
<td>13,8±0,46</td>
<td>6,17±0,31</td>
<td>16,93±1,30</td>
<td>64,19±2,32</td>
<td>2,5±0,21</td>
<td>1,4±0,10</td>
<td>1,5±0,14</td>
<td>0,5±0,00</td>
</tr>
</tbody>
</table>

MS = MATERIA SECA **DMO** = DIGESTIBILIDAD "IN VITRO" DE LA MATERIA ORGÁNICA **PC** = PROTEÍNA CRUDA **FDA** = FIBRA DETERGENTE ACIDO **FDN** = FIBRA DETERGENTE NEUTRO **EN** = ENERGÍA METABOLIZABLE **ENI** = ENERGÍA NETA PARA LACTACIÓN **ENm** = ENERGÍA NETA PARA MANTENIMIENTO **ENG** = ENERGÍA NETA PARA MANTENIMIENTO.
<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>ESTADO FISIOL.</th>
<th>PDG (NS)</th>
<th>P CENIZA</th>
<th>FDA</th>
<th>P N</th>
<th>ENM</th>
<th>ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semilla</td>
<td>1</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>Palma</td>
<td>2</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>Ensilaje</td>
<td>3</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>4</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>5</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>6</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>7</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>8</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>9</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
<tr>
<td>ensilaje</td>
<td>10</td>
<td>50.7</td>
<td>15.5±2.5</td>
<td>2</td>
<td>3.4±0.7</td>
<td>4.4±0.7</td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Los valores son promedio de muestras.
<table>
<thead>
<tr>
<th>Material</th>
<th>UREA</th>
<th>=</th>
<th>0.64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicia villosa (pierna entera)</td>
<td>31.9</td>
<td>=</td>
<td>7</td>
</tr>
<tr>
<td>Vicia villosa (hoja salvia)</td>
<td>13.4</td>
<td>=</td>
<td>1</td>
</tr>
<tr>
<td>Vicia villosa (hoja salvia)</td>
<td>1</td>
<td>=</td>
<td>1</td>
</tr>
</tbody>
</table>

Nota:
- **UREA** = Urea
- **VEG** = Vírgula

Información adicional:
- **P** = Proteína
- **F** = Fibra
- **EM** = Energía metabólica
- **EN** = Energía de la materia orgánica
- **P** = Procesamiento
- **EM** = Energía metabólica
- **EN** = Energía de la materia orgánica

G. PIGURINA
M. METHOL

1. INTRODUCCION

Hace muchos años que el Laboratorio de Nutricion Animal de la Estacion Experimental La Estanzuela realiza analisis quimicos y biologicos para determinar el valor nutritivo de alimentos. Este cumbulo de informacion ha sido archivado pero no fue difundida adecuadamente. En el presente trabajo se planteo la recopilacion, ordenamiento y revision de la informacion existente en archivos del Laboratorio de Nutricion Animal (LNA) del INIA La Estanzuela. Dicha informacion servira de base para la creacion de una tabla de valor nutritivo de alimentos.

2. MATERIALES Y METODOS

Se clasificaron las carpetas de informacion de acuerdo con el tipo de analisis, la especie vegetal y el año en que se realizaron. Tambien se rastrearon datos faltantes en tesis y otros trabajos publicados que incluyeron analisis en el Laboratorio mencionado. Se descartaron todas las carpetas y resultados con informacion incompleta o dudosa.

Cada resultado fue identificado segun la especie vegetal, tipo de analisis, ano de realizacion, descripcion de la muestra, numero de observaciones y autor del ensayo. Se confecciono una base de datos computarizada con agrupamiento por especie, diferenciada segun la fecha de corte (mes) y se calcularon la media aritmetica, el rango (valores maximo y minimo), la desviacion estandar y el coeficiente de variacion para cada analisis y cada especie.

3. RESULTADOS

Los resultados se resumen en el cuadro 1 y corresponden a los analisis de laboratorio efectuados de 1972 a 1985.

III.1. Especies: se obtuvo informacion de 11 especies puras. Las gramineas fueron: festuca, maiz, paspalum, raigas, sorgo forrajero, sorgo granifero y sudangrass. Las leguminosas fueron: alfalfa, lotus, trebol blanco, trebol rojo. No se incluyeron los datos de mezclas y campo natural por carecer de informacion sobre las muestras.

III.2. Tipo de analisis: se recopilaron resultados de digestibilidad “in vitro” e “in vivo” de la materia orgánica (% DMO) y de proteina cruda (% PC).

III.3. Identificacion y descripcion de las muestras: existio una gran variacion segun el objetivo de los ensayos y de su inclusion en los formularios originales.

III.4. Numero de observaciones: se presentan junto a cada resultado individual en el cuadro 1.

4. DISCUSION

La recopilacion de informacion no brindó los resultados esperados. Si bien el numero de carpetas y formularios hacian pensar en grandes volúmenes de datos, solo menos de la mitad fue aprovechable. Las principales dificultades fueron: falta de una descripcion adecuada de las muestras (solo figuraban con un codigo o numero), informacion escasa o inadecuada en los formularios, y la ausen-
Cuadro 1. Resumen de valores promedio, desvío estándar, máximo y mínimo de proteína cruda (% PC) y digestibilidad de la materia orgánica (% DMO) por especie.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Análisis</th>
<th>n</th>
<th>Promedio</th>
<th>DE</th>
<th>Máximo</th>
<th>Mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>% DMO</td>
<td>16</td>
<td>65,3</td>
<td>3,7</td>
<td>71,9</td>
<td>58,9</td>
</tr>
<tr>
<td>Festuca</td>
<td>% PC</td>
<td>48</td>
<td>16,4</td>
<td>2,3</td>
<td>21,7</td>
<td>11,1</td>
</tr>
<tr>
<td>Lotus</td>
<td>% PC</td>
<td>49</td>
<td>22,8</td>
<td>3,8</td>
<td>29,5</td>
<td>14,9</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>18</td>
<td>64,1</td>
<td>4,5</td>
<td>70,2</td>
<td>53,7</td>
</tr>
<tr>
<td>Maíz</td>
<td>% PC</td>
<td>24</td>
<td>5,9</td>
<td>2,0</td>
<td>9,2</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>36</td>
<td>67,1</td>
<td>7,4</td>
<td>83,3</td>
<td>55,4</td>
</tr>
<tr>
<td>Paspalum</td>
<td>% DMO</td>
<td>65</td>
<td>49,2</td>
<td>1,5</td>
<td>50,7</td>
<td>47,4</td>
</tr>
<tr>
<td>Raigrás</td>
<td>% PC</td>
<td>14</td>
<td>14,7</td>
<td>6,8</td>
<td>26,7</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>65</td>
<td>77,8</td>
<td>6,5</td>
<td>84,6</td>
<td>55,2</td>
</tr>
<tr>
<td>Rastrojo sorgo granífero</td>
<td>% PC</td>
<td>93</td>
<td>5,2</td>
<td>0,7</td>
<td>7,1</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>93</td>
<td>49,1</td>
<td>3,2</td>
<td>56,8</td>
<td>40,7</td>
</tr>
<tr>
<td>Sorgo forrajero</td>
<td>% PC</td>
<td>32</td>
<td>6,0</td>
<td>1,3</td>
<td>9,3</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>22</td>
<td>58,4</td>
<td>7,8</td>
<td>69,0</td>
<td>44,8</td>
</tr>
<tr>
<td>Sudangraas</td>
<td>% PC</td>
<td>16</td>
<td>7,9</td>
<td>4,0</td>
<td>14,4</td>
<td>9,4</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>16</td>
<td>65,4</td>
<td>4,0</td>
<td>74,7</td>
<td>58,6</td>
</tr>
<tr>
<td>Trébol blanco</td>
<td>% PC</td>
<td>35</td>
<td>26,0</td>
<td>3,5</td>
<td>30,6</td>
<td>18,2</td>
</tr>
<tr>
<td></td>
<td>% DMO</td>
<td>12</td>
<td>75,2</td>
<td>3,4</td>
<td>80,3</td>
<td>68,1</td>
</tr>
<tr>
<td>Trébol rojo</td>
<td>% PC</td>
<td>22</td>
<td>18,2</td>
<td>3,4</td>
<td>27,5</td>
<td>14,6</td>
</tr>
</tbody>
</table>

n = Número de observaciones.
DE = Desvío estándar.

A raíz de este estudio resalta la importancia que tiene la información que debe acompañar a las muestras remitidas al Laboratorio de Nutrición animal. Para ser de utilidad, dicha información deberá ser clara, estandarizada y completa. A partir del 1º de enero de 1989 el LNA implementó un sistema de codificación que apunta a resolver las carencias detectadas al realizar el presente trabajo.

Se presentan los resultados de análisis de muestras enviadas durante 1989-90 al Laboratorio Landwirtschaftskammer Rheinland, a cargo de la Agencia de Cooperación Alemana GTZ. Estas muestras se enviaron para comparar resultados y metodologías de análisis. Se destaca que dicho Laboratorio realiza una rutina de análisis distinta a la del LNA del INIA La Estanzuela. Los resultados se basan en el Sistema de Análisis de Weende (ver Capítulo II) y en el Hohenheimer Futtertest, y son procesados en el programa computacional FADAMS*.

Por este motivo pueden existir diferencias en los valores de análisis de las mismas muestras obtenidas entre los laboratorios de Uruguay y Alemania. Se incluyen los valores de almidón, azúcares y minerales: calcio (Ca), fósforo (P), sodio (Na) y potasio (K), para algunas muestras.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>MS</th>
<th>Ceniza</th>
<th>PC</th>
<th>EE</th>
<th>FC</th>
<th>ENN</th>
<th>Almidón</th>
<th>Azúcar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHICORIA,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Ensilaje, con</td>
<td></td>
<td>13.1±1.7</td>
<td>2.9±1.1</td>
<td>2.8±0.6</td>
<td>29.8±3.1</td>
<td>88.4±7.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tracol rojo</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ARROZ,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryza sativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Paja</td>
<td>89.4</td>
<td>18.9</td>
<td>3.6</td>
<td>0.4</td>
<td>34.2</td>
<td>30.4</td>
<td>—</td>
<td>0.55</td>
</tr>
<tr>
<td>— Barrido industrial</td>
<td>85.9</td>
<td>2.9</td>
<td>8.4</td>
<td>2.7</td>
<td>3.5</td>
<td>36.4</td>
<td>65.7</td>
<td>1.79</td>
</tr>
<tr>
<td>AVENA,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena sativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Ensilaje</td>
<td></td>
<td>91.2</td>
<td>3.9</td>
<td>0.2</td>
<td>40.1</td>
<td>39.8</td>
<td>—</td>
<td>0.96</td>
</tr>
<tr>
<td>— Cascarra</td>
<td></td>
<td>5.2</td>
<td>0.3</td>
<td>0.7</td>
<td>27.4</td>
<td>—</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>CEBADA,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Grano</td>
<td>91.3±0.3</td>
<td>2.4</td>
<td>11.6±0.1</td>
<td>3.6</td>
<td>4.4±0.2</td>
<td>66.3</td>
<td>52.2</td>
<td>2.3</td>
</tr>
<tr>
<td>— Cebada</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>1.56</td>
</tr>
<tr>
<td>CITRUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Exceber de pulpa</td>
<td>92.5</td>
<td>22.5</td>
<td>4.9</td>
<td>12.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>— Piel de pulpa</td>
<td>93.7</td>
<td>0.1</td>
<td>5.2</td>
<td>1.6</td>
<td>4.7</td>
<td>53.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

MS = MATERIA SEC. **EE** = EXTRACTO ETÉRICO. **PC** = FIBRA CRUDA. **FC** = PROTEÍNA CRUDA. **ENN** = EXTRACTO NO NITROGENADO. **ENI** = ENERGÍA NETA PARA LACTACIÓN. **Ca** = CALCIO. **P** = FOSFATO. **Na** = SODIO. **K** = POTÁSIO.
| Descripción | MS % | Cenizas % | PC % | EE % | FC % | EINN % | Almidón % | Azúcar % | EN
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GIRASOL, Helianthus annuus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Expelar</td>
<td>93,1</td>
<td>5,5</td>
<td>36,9</td>
<td>8,2</td>
<td>19,0</td>
<td>21,5</td>
<td>1,7</td>
<td>6,5</td>
<td>1,63</td>
</tr>
<tr>
<td>HUESOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Harina</td>
<td>53,9</td>
<td>21,1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>23,62</td>
</tr>
<tr>
<td>LINO, Linum usitatissimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Expelar</td>
<td>90,3</td>
<td>5,5</td>
<td>33,4</td>
<td>3,4</td>
<td>11,5</td>
<td>35,5</td>
<td>5,5</td>
<td>3,7</td>
<td>1,54</td>
</tr>
<tr>
<td>LOTUS, Lotus corniculatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Harina</td>
<td>94,2</td>
<td>6,7</td>
<td>11,4</td>
<td>1,6</td>
<td>31,5</td>
<td>43,0</td>
<td>—</td>
<td>—</td>
<td>1,12</td>
</tr>
<tr>
<td>MAÍZ, Zea mays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Grano</td>
<td>87,1</td>
<td>—</td>
<td>9,5</td>
<td>—</td>
<td>2,0</td>
<td>—</td>
<td>61,0</td>
<td>—</td>
<td>2,01</td>
</tr>
<tr>
<td>— Gluten feed</td>
<td>89,8</td>
<td>2,4</td>
<td>19,1</td>
<td>10,1</td>
<td>5,2</td>
<td>53,0</td>
<td>40,3</td>
<td>3,4</td>
<td>21,44</td>
</tr>
<tr>
<td>— Ensilaje</td>
<td>—</td>
<td>5,7±0,4</td>
<td>5,4±0,6</td>
<td>1,8±0,8</td>
<td>26,1±3,8</td>
<td>54,9±2,0</td>
<td>—</td>
<td>1,30±0,1</td>
<td>2</td>
</tr>
<tr>
<td>SOJA, Glycine max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Expelar</td>
<td>20,5</td>
<td>5,6</td>
<td>15,4</td>
<td>—</td>
<td>6,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>SORGO GRANIFERO, Sorghum bicolor</td>
<td>SUDANGRASS, Sorghum sudanense</td>
<td>TRIGO, Triticum aestivum</td>
<td>RACION BALANCEADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grano</td>
<td>Ensilaje</td>
<td>Afnechillo</td>
<td>Corredor XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67,3±0,8</td>
<td>2</td>
<td>88,0±0,9</td>
<td>67,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>1</td>
<td>4,7±0,4</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,1±0,6</td>
<td>2</td>
<td>15,1±1,3</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>1</td>
<td>4,6±0,1</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,6±0,5</td>
<td>2</td>
<td>9,0±1,1</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72,7</td>
<td>1</td>
<td>63,7±0,1</td>
<td>63,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>2</td>
<td>22,1</td>
<td>46,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,89±0,1</td>
<td>2</td>
<td>1,49±0,0</td>
<td>1,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,02</td>
<td>1</td>
<td>0,19±0,1</td>
<td>0,71±0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,23</td>
<td>1</td>
<td>0,71±0,3</td>
<td>0,4±0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,33</td>
<td>1</td>
<td>1,03±0,1</td>
<td>1,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MS = MATERIA SECA. EE = EXTRACTO ETHEREO. FC = FIBRA CRUJA. PC = PROTEINA CRUDA. EHN = EXTRACTO NO HETEROGENEO. ENHI = ENERGIA NETA PARA LACTACION. Ca = CALCIO. P = FOSFORO. Na = SODIO. K = POTASIO.
II. ESTIMADORES DEL VALOR NUTRITIVO PARA PRODUCCION DE LECHE

YAMANDÚ ACOSTA

II.1. INTRODUCCION

En el proceso evolutivo, los rumiantes han sido los compañeros de ruta más apropiados para el hombre, debido a que además de proporcionarle carne, cuero, fibra y leche, pueden utilizar para su alimentación productos de valor escaso o nulo para el hombre.

La ventaja ecológica de los rumiantes se basa en la adaptación anatómica y fisiológica de su tracto digestivo, lo que les permite, mediante una predigestión microbiana (fomentación) de los alimentos fibrosos, la utilización de carbohidratos estructurales como la celulosa, uno de los compuestos orgánicos más abundantes de la naturaleza, y compuestos nitrogenados no proteicos, para satisfacer sus necesidades de energía y proteína.

Sin embargo, desde hace mucho tiempo se ha observado que los productos utilizados en la alimentación de rumiantes tienen diferente aptitud para promover distintos tipos y ritmos de producción. Lo anterior, unido al hecho de que la alimentación (producción y compra de alimentos) constituye uno de los componentes más caros en las explotaciones de producción animal, han llevado al desarrollo de diversas metodologías para determinar el valor nutritivo de los alimentos.

El objetivo de este trabajo es comentar y discutir brevemente los posibles usos y limitaciones de los indicadores de valor nutritivo más típicos que brindan los resultados de análisis de un laboratorio de nutrición animal, con la finalidad de optimizar el uso de los recursos nutritivos disponibles.

Antes de seguir adelante es conveniente hacer algunas precisiones de carácter general, y que se sugiere tener siempre presente cuando se consideren aspectos nutricionales de la producción animal.

En primer lugar, los análisis de valor nutritivo no son un fin en sí mismos; estos resultados sólo tienen valor en la medida que sirvan para predecir performance o comportamiento animal.

En segundo lugar, lo que se conoce como “sabiduría nutritional” natural de los animales no opera tal como en esquemas de producción intensivos. Ningún sistema intensivo de producción animal puede basar su eficiencia física y económica en el hecho de que sean los animales quienes decida qué y cuánto consumen. La eficiencia deberá basarse en una asignación planificada de los recursos alimenticios disponibles, de acuerdo con las metas de producción previstas.

II.2. UTILIZACION DE NUTRIENTES

La información internacional disponible sobre el tema de utilización de nutrientes por la vaca lechera es abundante. Aquí solamen
te se hará una referencia introductoria a la utilización de los macronutrientes PROTEINA y ENERGÍA, por ser éstos los de mayor demanda relativa y de mayor importancia económica.

II.2.1. PROTEÍNA

La proteína es un nutriente vital, requerido para mantenimiento, reproducción, crecimiento y lactación. En la producción de leche, sólo la energía es requerida en mayor cantidad que la proteína (1).
Como ya se mencionó, los ruminantes, a través de la síntesis de proteína microbiana en el rúmen, tienen la capacidad de utilizar diversas fuentes de nitrógeno para satisfacer al menos en parte los requerimientos del animal huépoc (26). Esta capacidad de sintetizar proteína por los microorganismos del rúmen, cuando la disponibilidad de nitrógeno no es limitante, depende básicamente de la disponibilidad de energía de la dieta. Diversos trabajos realizados en el extranjero indican que, en promedio, el 72% de la variación observada en aporte de proteína microbiana al intestino del animal fue explicada por la disponibilidad de energía – nivel del rúmen – de las dietas utilizadas (8).

No obstante, en situaciones de alta demanda nutricional, como son animales en rápido crecimiento o la vaca lechera de altos rendimientos, el flujo de proteína microbiana al intestino puede no ser suficiente para satisfacer los requerimientos del animal. En estos casos, ese déficit debe ser cubierto con proteína de la dieta que sea capaz de escapar a la degradación ruminal, dado que la capacidad de sintetizar proteína microbiana a partir de nitrógeno no proteico ha sido saturada (10).

En la figura 3 se muestra este efecto. Una vez agotada la capacidad de síntesis de proteína microbiana del rúmen, todo aumenta en el suministro de nitrógeno no proteico hace que ese amonio escape del rúmen para ser metabolizado en el hígado y luego ser eliminado en la orina y parcialmente devuelto al rúmen vía saliva.

Por lo tanto para aumentar la oferta proteica a nivel del intestino, se hace necesario recurrir a la proteína del alimento. Así entonces, para un mismo nivel de proteína cruda (PC) de la dieta, el aporte es mayor para aquellos suplementos con una proporción mayor de proteína no degradable a nivel del rúmen (ejemplo: harina de pescado).

En la figura 4 se aprecia el efecto descrito sobre la producción de leche al variar simultáneamente el contenido de proteína cruda de la dieta y la sustitución de proteína verdadera por su equivalente en urea (nitrógeno no proteico) en un rango del 0 al 40% (23).

De todos modos, exista en la bibliografía internacional información experimental que reporta producciones de más de 4,000 kg de leche por lactancia en base a dietas purificadas, libres de proteína, suplementadas con nitrógeno no proteico (27). Por lo tanto, las dietas a base de forraje y concentrados con contenidos promedio de proteína no degradable en el rúmen, no serán limitantes para niveles de producción del orden de los 4,500 a 5,000 kg de leche por lactancia (18).

Figura 3. Efecto del tipo de proteína de la dieta sobre la cantidad de proteína absorbida a nivel del intestino. (Adaptado de Satter et al., 1977.)
II.2.2. ENERGÍA

Si bien no hay signos específicos provocados por deficiencia de energía, la misma se manifiesta en el ganado lechero por una reducción en el rendimiento de leche, pérdida de peso de los animales y disminución del comportamiento reproductivo (15).

Existen muchas formas para expresar los requerimientos energéticos de los animales y del valor energético de los alimentos. Según el esquema convencional (20), estos indicadores incluyen: energía digestible (ED), energía metabolizable (EM), energía neta de mantenimiento (ENm), energía neta de ganancia de peso (ENG), energía neta de lactación (ENL) y nutrientes digestibles totales (NDT).

Figura 4. Efecto de variar simultáneamente la cantidad y el tipo de proteína de la dieta sobre la producción de leche. (Adaptado de Polan et al., 1976.)
II.2.2.A. ENERGÍA DIGESTIBLE

Este término sólo toma en cuenta la pérdida de energía en forma de heces. En muchos casos la ED se estima a partir del contenido de nutrientes digestibles totales (% NDT) de un alimento, estimando un valor de 4.409 Mcal de ED por kg de NDT (20).

La mayor crítica al uso de este indicador es que el mismo está muy afectado por el nivel de consumo del animal, y que usualmente se estima mediante ensayos de digestibilidad con animales en niveles de consumo equivalentes (o muy cercanos) a mantenimiento, por lo cual para poder extrapolarlo a animales en producción es necesario una corrección por nivel de consumo.

En segundo lugar, se ha observado que la eficiencia con que se usa 1 kg de NDT con propósitos productivos es diferente según que ese NDT provenga de forrajes o de concentrados. Esto se debe a que la depresión causada por el aumento en el nivel de consumo no es igual para todos los componentes del alimento, siendo mayor para los componentes de la fracción libre (13).

II.2.2.B. ENERGÍA METABOLIZABLE

La EM toma en cuenta las pérdidas de energía en las heces y orina. Si bien a nivel experimental se han determinado los requerimientos de EM para vacas lecheras, existe relativamente poca información obtenida en forma directa sobre el contenido de EM de los alimentos. Por lo general, la EM se estima como una función de la ED (12).

II.2.2.C. ENERGÍA NETA

El sistema de energía neta (EN) ha sido propuesto como forma de reducir las imprecisiones que causa el uso de ED, NDT y EM. La EN toma en cuenta las pérdidas de energía debidas al proceso digestivo (heces, orina, gas, incremento calórico), así como diferencias debidas al nivel de consumo.

Sin embargo, la eficiencia de utilización de la EN de un alimento depende de si es usada para mantenimiento, crecimiento, engorde o lactación (12). Por esta razón, cada alimento tiene más de un valor de EN.

Afortunadamente, los animales en lactación utilizan la EN con aproximadamente la misma eficiencia tanto sea para mantenimiento como para producción de leche. Esto permite utilizar un único valor (ENL) para presupuestar los requerimientos y evaluar los alimentos para vacas lecheras (12).
II.3. METODOS DE EVALUACION NUTRITIVA

II.3.1. EVALUACION VISUAL

Todos los alimentos, y en especial los forrajes, normalmente se evalúan en base a la vista, el olor y el tacto. Si bien la evaluación visual tiene serias limitaciones para cuantificar la calidad de un alimento, determinadas características como el color, el olor, la cantidad de hojas y tallos, el estado de maduración del cultivo, y la contaminación con malezas, hongos y tierra, permiten una primera apreciación de la calidad, e incluso establecer un ranking entre forrajes comparables.

La evaluación visual para ayudar a identificar problemas que no pueden ser explicados por el análisis de laboratorio corrientes, por lo que es recomendable usar el método visual conjuntamente con los datos de análisis químico.

II.3.2. ANÁLISIS QUÍMICOS

Los métodos químicos son actualmente los más difundidos y más ampliamente utilizados en el mundo. Estos métodos se basan en conocidos principios químicos y bioquímicos: a través de procesos de secado, extracción y pesado se determinan los principales componentes de valor nutritivo de los alimentos.

Para que el resultado del análisis sea válido es imprescindible utilizar un procedimiento de muestreo que asegure una muestra representativa del alimento a analizar.

II.3.2.A. ANÁLISIS PROXIMAL

Es uno de los métodos más antiguos, con más de un siglo de formulado. Se basa en la partición de la fracción de materia seca (MS) en componentes de valor nutritivo conocido como extracción al éter (EE) (lipidos), proteína cruda (PC) (N total x 6,25), cenizas (Cen) (fracción mineral), fibra cruda (FC) (parte de la celulosa y la lignina) y extracto no nitrogenado (ENN) (azúcares solubles, almidón y parte de la celulosa y la lignina).

La principal limitante de este método consiste en su baja precisión en la recuperación de algunos componentes de la pared celular. La fracción extracto no nitrogenado se calcula por diferencia: ENN = MS - (PC + FC + EE + Cen), de esta forma parte de la lignina y la celulosa hidrolizada en el procedimiento de extracción de fibra cruda es computada como ENN. Esto explica porque en muchos experimentos la digestibilidad de la fracción FC (básicamente pared celular) resultó mayor que la de los ENN (almidones) (17).

II.3.2.B. COMPONENTES DE LA PARED CELULAR POR EL MÉTODO DE LOS DETERGENTES

Este método fue desarrollado en la década del 50 por el Dr. Peter Van Soest con el objetivo de solucionar un problema importante: el sistema tradicional de determinación de la fibra cruda no diferenciaba los componentes de la pared celular lo suficiente como para generar estimadores precisos del valor energético de los forrajes en un amplio rango de especies y estados de madurez.

II.3.2.B.1. FIBRA INSOLUBLE EN DETERGENTE NEUTRO (FDN)

La FDN es la porción de la muestra de forraje que es insoluble en un detergente neutro (pH 7,0). Está básicamente compuesta por celulosa, hemicelulosa, lignina y silice, y se le conoce comúnmente como "fracción pared celular".

El contenido de FDN de un forraje aumenta con la maduración pero también hay diferencias importantes entre especies forrajeras. En general, a igualdad de estado de madurez, las gramíneas tienen un contenido de FDN más alto que las leguminosas; a su vez, las gramíneas tropicales tienen más "pared celular" que las gramíneas templadas.

El contenido de FDN de un forraje está negativamente correlacionado con el máximo consumo voluntario de ese material por los ruminantes. Por lo tanto, cuando se formulan raciones en forma muy precisa FDN es un buen indicador de potencial de consumo de esa dieta.
II.3.2.B.2. FIBRA INSOLUBLE EN DETERGENTE ACIDO (FDA)

Es la fracción de la pared celular del forraje que es más comúnmente incluida en los resultados de laboratorio. Incluye celulosa, lignina y silice.

La importancia de FDA radica en que está negativamente correlacionada con la disponibilidad de energía del forraje, por lo que se han desarrollado ecuaciones específicas para distintas especies forrajeras. Estas ecuaciones permiten estimar el valor energético de un material a partir del dato de su contenido de FDA.

A partir del residuo insoluble en detergente ácido se puede continuar la extracción y determinar el contenido de lignina y de celulosa de una muestra. La lignina es un compuesto no glucídico de la pared celular que dificulta la accesibilidad de los microorganismos del rumen a la celulosa y la hemicelulosa, limitando la digestibilidad de esos componentes.

La figura 5 muestra un esquema de partición de los componentes de la pared celular comparando el método de los detergentes con el de fibra cruda.

II.4. INTERPRETACION DE LOS RESULTADOS

A continuación se presentan los indicadores de valor nutritivo más típicos de un informe de resultados de análisis de laboratorio, destacándose su significado y limitaciones.

II.4.1. MATERIA SECA (MS)

Es la fracción del alimento libre de agua e indica su concentración de nutrientes. Si bien la vaca lechera no tiene requerimientos de materia seca como tal, la MS es un indicador importante pues constituye una de las fuentes más importantes de variación de valor nutritivo (concentración de nutrientes) entre alimentos similares dado que el agua carece de relevancia desde el punto de vista del aporte de nutrientes.

En el caso de forrajes conservados (hechos o ensilajes), su contenido de humedad puede dar una pauta de lo más o menos riesgoso del proceso de conservación.
II.4.2. PROTEÍNA

II.4.2.A. PROTEÍNA CRUDA (PC)

Es una medida del contenido de nitrógeno total de una muestra, y se expresa como N x 6.25, dado que la proteína de la mayoría de los forrajes tiene un contenido promedio de nitrógeno del 16%.

La importancia de este estimador se basa en el hecho que los ruminantes son capaces de utilizar nitrógeno no proteico, y satisfacer parte de sus requerimientos de proteína con proteína microbiana sintetizada en el rumen.

La otra ventaja que ofrece este parámetro es que la mayor parte de la información disponible sobre requerimientos nutricionales y sobre valor nutritivo de alimentos está expresada en términos de PC. Sin embargo, PC no indica ni la proporción de proteína verdadera y nitrógeno no proteico de un alimento, ni las características de degradabilidad ruminal de la misma.

II.4.2.B. PROTEÍNA CRUDA NO DISPONIBLE

La proteína cruda tampoco informa de la cantidad de nitrógeno adherido a la fracción fibra ácido detergente (ADIN), la cual no está disponible para los microorganismos del rumen.

Si bien todos los alimentos tienen parte de su nitrógeno en forma no disponible, la mayoría de las estimaciones de requerimientos nutricionales y de respuesta a la suplementación con proteína cruda se basan en forrajes "normales", con un contenido igual o inferior al 12% de su nitrógeno total asociado a la fracción FDA.

Sin embargo, cuando un forraje es expuesto a altas temperaturas, pueden ocurrir procesos de desnaturalización de las proteínas y de síntesis (productos de la reacción de Maillard, compuestos lignozitrogenados y condensados tanino-proteicos) que provocan una reducción de la disponibilidad del nitrógeno.

Este nitrógeno se encuentra asociado a la fibra detergente ácido (FDA) y se le conoce como ADIN (Acid Detergent Insoluble Nitrogen) o como su equivalente en proteína cruda ADIN-PC (ADIN X 6.25). El nitrógeno adherido a la fracción FDA es por lo tanto un excelente indicador de problemas de conservación de un forraje, especialmente calentamiento.

Valores de ADIN superiores al 12% de nitrógeno total indican reducción de la digestibilidad de la proteína cruda por calentamiento, y valores superiores al 15% indican la ocurrência de intenso calentamiento y -en consecuencia- considerable daño en la fracción proteína cruda.

II.4.2.C. PROTEÍNA CRUDA DISPONIBLE (PCD)

En los casos en que se sospeche que puede haber ocurrido calentamiento (herbas y ensilajes principalmente) es aconsejable solicitar la estimación del ADIN al laboratorio. Siempre que el ADIN sea mayor del 12% del nitrógeno total, es recomendable usar el parámetro proteína cruda disponible (PCD) en lugar de PC, para formular raciones. Para ello deberá realizarse la siguiente corrección:

\[
\%\text{PCD} = \frac{\%\text{PC} \times [100 - (\%\text{ADIN-PC} - 12\%)]}{100}
\]

II.4.3. FRACCIÓN FIBRA

Básicamente, está constituida por los componentes de la pared celular, los cuales se encuentran entre las fracciones químicas menos digestibles de los alimentos, y que presentan buenas correlaciones con el valor energético de los alimentos.

II.4.3.1. FIBRA DETERGENTE ACIDA (FDA)

Como ya se mencionara, FDA es un indicador de la disponibilidad de energía de la dieta, y es normalmente el parámetro utilizado para estimar la energía neta (EN) y los nutrientes digestibles totales (NDT) de un alimento.
Valores muy altos de FDA indican un material de baja calidad, pero dietas con contenidos menores a 20-21% de FDA pueden provocar disturbios digestivos, especialmente a nivel de rumen, y el síndrome de bajo tenor graso de la leche (15).

II.4.3.B. FIBRA DETERGENTE NEUTRO (FDN)

Es un indicador de la densidad de un alimento. Las dietas formuladas con contenidos mayores a 55% pueden mostrar limitaciones en su consumo voluntario máximo, y por lo tanto pueden no lograr satisfacer los requerimientos previstos. La mayoría de los laboratorios incluyen normalmente FDA en sus resultados; el FDN se incluye sólo cuando se lo solicita específicamente.

II.4.3.C. FIBRA CRUDA (FC)

Es un indicador que actualmente se usa poco debido a las razones ya discutidas. Algunos laboratorios lo incluyen en sus resultados de análisis, pero en estos casos también se puede calcular a partir de FDA, o bien a partir de un método modificado.

II.4.4. ENERGÍA

Como ya se adelantara, por lo general los valores de energía se calculan mediante ecuaciones que utilizan otros datos del mismo análisis del alimento. Como no todos los laboratorios usan las mismas fórmulas, es posible obtener valores de energía algo diferentes según la fuente utilizada.

II.4.4.A. NUTRIENTES DIGESTIBLES TOTALES (NDT)

Este indicador es normalmente estimado a partir del contenido de FDA de una muestra. Existen muchas ecuaciones para predecir NDT, dependiendo del laboratorio que las generó.

Por ejemplo:

a) Ecuación Promedio Para Gramíneas

\[\% \text{NDT} = 92,51 - (\% \text{FDA} \times 0,7985) \] [7]

b) Ecuación Promedio Para Pasturas Mezcla

\[\% \text{NDT} = 102,55 - (\% \text{FDA} \times 1,140) \] [7]

c) Ecuación Promedio Para Alfalfa

\[\% \text{NDT} = 96,35 - (\% \text{FDA} \times 1,15) \] [22]

d) Ecuación Promedio Para Ensilaje de Maíz

\[\% \text{NDT} = 87,84 - (\% \text{FDA} \times 0,70) \] [22]
II.4.4.B. ENERGÍA DIGESTIBLE

Este parámetro se obtiene por ecuaciones (generalmente a partir del contenido de FDA de una muestra), por técnicas "in vitro", o por ensayos de digestibilidad "in vivo". El valor informado generalmente es la digestibilidad de la materia orgánica (DMO), ya que la fracción mineral no aporta energía.

II.4.4.C. ENERGÍA NETA

Es usual que los valores de energía neta se obtengan o bien directamente del contenido de FDA de una muestra, o a partir de NDT, el cual es a su vez en muchos casos obtenido a partir de FDA.

Las ecuaciones para estimar energía neta suelen incluir un descuento estándar por nivel de consumo; para el caso de tablas norteamericanas, este descuento supone un nivel de consumo equivalente a 3 múltiplos del consumo de mantenimiento (7).

Debido a la diferente eficiencia con que la EN es utilizada por el animal según el estado fisiológico que se considere, cada alimento tiene más de un valor de EN; por ejemplo, para una dieta promedio y utilizando el valor de % NDT:

- Para lactación

\[\text{ENI (Mcal/kg MS)} = (\% \text{ NDT} \times 0,02456) - 0,119 \] \hspace{1cm} [22]

- Para mantenimiento

\[\text{ENm (Mcal/kg MS)} = (\% \text{ NDT} \times 0,02906) - 0,291 \] \hspace{1cm} [22]

- Para ganancia de peso

\[\text{ENg (Mcal/kg MS)} = (\% \text{ NDT} \times 0,02906) - 1,012 \] \hspace{1cm} [22]

Como ya se mencionó, las vacas en lactación requieren un único valor de energía neta (ENI) dado que la eficiencia de utilización de la misma para lactación y para mantenimiento es similar.

A continuación—y a modo de ejemplo—se presentan algunas ecuaciones para predecir ENI a partir de FDA para distintos alimentos, según diferentes fuentes.

Maíz grano
- ENI (Mcal/kg MS) =
 \[2,07 - (0,0176 \times \% \text{ FDA}) \] \hspace{1cm} [7]
- ENI (Mcal/kg MS) =
 \[1,995 - (0,0057 \times \% \text{ FDA}) \] \hspace{1cm} [21]

Maíz, mazorca entera
- ENI (Mcal/kg MS) =
 \[2,284 - (0,0507 \times \% \text{ FDA}) \] \hspace{1cm} [21]

Raciones completas
- ENI (Mcal/kg MS) =
 \[1,909 - (0,015 \times \% \text{ FDA}) \] \hspace{1cm} [7]

Mézcla de granos
- ENI (Mcal/kg MS) =
 \[1,784 - (0,0117 \times \% \text{ FDA}) \] \hspace{1cm} [7]

Ensillaje de maíz
- ENI (Mcal/kg MS) =
 \[2,301 - (0,0273 \times \% \text{ FDA}) \] \hspace{1cm} [21]
- ENI (Mcal/kg MS) =
 \[2,072 - (0,0176 \times \% \text{ FDA}) \] \hspace{1cm} [7]

Leguminosas, principalmente alfalfa
- ENI (Mcal/kg MS) =
 \[2,302 - (0,0262 \times \% \text{ FDA}) \] \hspace{1cm} [21]
- ENI (Mcal/kg MS) =
 \[2,302 - (0,0271 \times \% \text{ FDA}) \] \hspace{1cm} [7]

Gramíneas
- ENI (Mcal/kg MS) =
 \[2,381 - (0,0273 \times \% \text{ FDA}) \] \hspace{1cm} [21]
- ENI (Mcal/kg MS) =
 \[2,391 - (0,0331 \times \% \text{ FDA}) \] \hspace{1cm} [7]

Pasturas mezcla
- ENI (Mcal/kg MS) =
 \[2,398 - (0,0269 \times \% \text{ FDA}) \] \hspace{1cm} [21]
- ENI (Mcal/kg MS) =
 \[2,301 - (0,0269 \times \% \text{ FDA}) \] \hspace{1cm} [7]
II.5. GUÍA PARA EVALUAR DIETAS DE VACAS LECHERAS

A modo de resumen y ejemplo, a continuación se incluye el cuadro 2 con una serie de criterios que servirán principalmente para diagnosticar sobre lo ajustado o no de una dieta para vacas lecheras, según los objetivos de producción propuestos.

Cuadro 2. Estimaciones del rango de concentración de nutrientes de raciones para vacas lecheras, considerando varios niveles de producción.

<table>
<thead>
<tr>
<th>Producción de leche (kg/día)</th>
<th>Proteína cruda (%)</th>
<th>Energía Neta de Lactación (Mcal/Kg NS)</th>
<th>FDN (%)</th>
<th>FDA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-14</td>
<td>12-13</td>
<td>1,32-1,54</td>
<td>35-40</td>
<td>28-29</td>
</tr>
<tr>
<td>14-18</td>
<td>13-14</td>
<td>1,22-1,44</td>
<td>35-40</td>
<td>28-27</td>
</tr>
<tr>
<td>18-23</td>
<td>14-15</td>
<td>1,32-1,54</td>
<td>32-35</td>
<td>23-24</td>
</tr>
<tr>
<td>23-27</td>
<td>14-15</td>
<td>1,42-1,63</td>
<td>27-32</td>
<td>20-21</td>
</tr>
<tr>
<td>27-38</td>
<td>16-18</td>
<td>1,63-1,82</td>
<td>27-32</td>
<td>20-21</td>
</tr>
<tr>
<td>38-45</td>
<td>16-18</td>
<td>1,73-1,92</td>
<td>25-27</td>
<td>20-21</td>
</tr>
</tbody>
</table>
III. CONSIDERACIONES ECONÓMICAS-NUTRICIONALES EN LA ELECCION DE SUPLEMENTOS

HEINO BASSEWITZ
YAMANDÚ ACOSTA
JUAN MIERES

III.1. INTRODUCCION

El empleo de esquemas intensivos de producción normalmente lleva, en mayor o menor medida, al uso de alimentos no producidos en el establecimiento para satisfacer la demanda animal según los objetivos de producción planteados.

Los sistemas intensivos de producción animal tienen por objetivo maximizar la productividad de los recursos; la evaluación de los diferentes componentes del sistema se basa en su capacidad de generar un producto específico. Dado que—normalmente—alimentos diferentes tienen distinta capacidad para sostener funciones fisiológicas tales como mantenimiento, crecimiento, producción de leche, lana, etc., se torna necesario ordenar prioriariamente los alimentos, no sólo en base a su costo sino considerando también su contenido de nutrientes, principalmente de energía y proteína, que son más limitantes en la alimentación de los rumiantes.

Este trabajo pretende revisar algunos métodos objetivos para considerar—simultáneamente—aspectos económicos y nutricionales en la evaluación de suplementos alimenticios. Se estima que será de ayuda para mejorar la gestión empresarial en establecimientos con sistemas de producción intensivos.

III.2. VALORIZACION ECONOMICA DE SUPLEMENTOS Y FORRAJES

Los alimentos para consumo animal se pueden clasificar en función de su origen en:

- **ALIMENTOS PARA ANIMALES**
 - **COMPRADOS**
 - **PRODUCIDOS EN LA EXPLOTACIÓN**
 - **VENDIBLES**
 - **NO VENDIBLES**

- **PRODUCCION NO NECESARIAMENTE DESTINADA A LA PRODUCCION ANIMAL**
 - **PRODUCCION NECESARIAMENTE DESTINADA A LA PRODUCCION ANIMAL**

Para evaluar el valor de suplementos y forrajes pueden utilizarse varios métodos de cálculo: el valor de costo, el valor de transformación, el valor de sustitución y el valor índice.

III.2.1. EL VALOR DEL COSTO

El valor del costo es el método más tradicional para calcular el valor de un alimento comprado. Este valor incluye el precio del producto, los fleaes, el costo del almacenaje, y el costo de oportunidad del dinero (interés sobre el capital invertido) en el caso de no consumir los alimentos al momento de la compra. En caso de usar dinero prestado para la compra del producto y el servicio de fleaes, habría que agregar su costo.

En el cuadro 3 figura el valor nutritivo y económico de diferentes suplementos disponibles en el mercado uruguayo.
Cuadro 3. Valor nutricional y económico de diferentes suplementos, en US$ (11/00).

<table>
<thead>
<tr>
<th>Suplemento</th>
<th>MS (%)</th>
<th>Proteína Cruda (%)</th>
<th>MJ ENI/kg MS</th>
<th>PRECIO /kg MS</th>
<th>PRECIO /1000 MJ ENI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ración/Vacas lecheras</td>
<td>88,0</td>
<td>13,3</td>
<td>7,13</td>
<td>0,142</td>
<td>19,92</td>
</tr>
<tr>
<td>GRANOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorgo granífero</td>
<td>88,0</td>
<td>8,7</td>
<td>7,40</td>
<td>0,098</td>
<td>13,24</td>
</tr>
<tr>
<td>Cebada cervecera</td>
<td>88,6</td>
<td>11,5</td>
<td>7,30</td>
<td>0,107</td>
<td>14,66</td>
</tr>
<tr>
<td>Maíz</td>
<td>87,1</td>
<td>9,5</td>
<td>8,40</td>
<td>0,142</td>
<td>16,90</td>
</tr>
<tr>
<td>SUBPRODUCTOS ENERGÉTICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cáscara de avena</td>
<td>91,2</td>
<td>3,9</td>
<td>4,10</td>
<td>0,018</td>
<td>4,39</td>
</tr>
<tr>
<td>Alcehillo de trigo</td>
<td>87,4</td>
<td>17,3</td>
<td>6,24</td>
<td>0,065</td>
<td>10,41</td>
</tr>
<tr>
<td>Pellet de citricos</td>
<td>90,7</td>
<td>6,2</td>
<td>6,70</td>
<td>0,088</td>
<td>13,13</td>
</tr>
<tr>
<td>Pellet de remolacha</td>
<td>88,2</td>
<td>8,0</td>
<td>8,00</td>
<td>0,102</td>
<td>12,75</td>
</tr>
<tr>
<td>Gluten feed</td>
<td>89,9</td>
<td>9,1</td>
<td>8,97</td>
<td>0,445</td>
<td>40,61</td>
</tr>
<tr>
<td>Harina de cebada</td>
<td>88,0</td>
<td>11,7</td>
<td>7,84</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>SUPRODUCTOS PROTEICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harina de girasol</td>
<td>93,1</td>
<td>38,9</td>
<td>6,81</td>
<td>0,150</td>
<td>22,03</td>
</tr>
<tr>
<td>Harina de lino</td>
<td>90,3</td>
<td>33,4</td>
<td>6,43</td>
<td>0,155</td>
<td>27,11</td>
</tr>
<tr>
<td>Pellet de soja</td>
<td>90,8</td>
<td>45,4</td>
<td>7,13</td>
<td>0,231</td>
<td>31,60</td>
</tr>
</tbody>
</table>

1 MJ = 0,239

También se puede calcular el costo para alimentos (vendibles y no vendibles) producidos en el propio establecimiento.

En los cuadros 4 y 5 se presentan, como ejemplos, los cálculos de costo de un producto vendible (grano de trigo), de otro no vendible (ensilaje de maíz).

En el cuadro 6 se incluye un resumen del costo de distintos ensilajes.

Los diferentes cálculos de costos van a servir en los siguientes capítulos de evaluación económica de diferentes concentrados y forrajes.

III.2.2. EL VALOR DE TRANSFORMACIÓN

Representa la transformación sin costo de la unidad del producto a valorizar, en el caso de la utilización de este producto dentro de la explotación agrícola.

El valor de transformación se calcula sobre la base del margen bruto.

Se toma el ejemplo del valor de transformación del forraje a través de la producción lechera que figura en el cuadro 7.

En este caso hipotético, el kilogramo de MS de forraje vale (sin costo de oportunidad) 6 centavos de dólar.

En el caso de existencia de costo de oportunidad habría que disminuir el margen bruto en ese costo de oportunidad (por ejemplo el costo de mano de obra familiar como factor de producción limitado).

<table>
<thead>
<tr>
<th>Cultivo: Trigo (grano)</th>
<th>Cantidad por ha</th>
<th>Precio unitario</th>
<th>Monto por ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTOS VARIABLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Labores: tractor +...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- arado</td>
<td>80 CV/1,4 m</td>
<td>21,48/ha</td>
<td>21,48</td>
</tr>
<tr>
<td>- rastrador de discos</td>
<td>80 CV/4,4 m</td>
<td>6,42/ha</td>
<td>6,42</td>
</tr>
<tr>
<td>- excéntrica</td>
<td>80 CV/2,0 m</td>
<td>13,59/ha</td>
<td>13,59</td>
</tr>
<tr>
<td>- rastra de dientes</td>
<td>80 CV/4 m</td>
<td>4,41/ha</td>
<td>4,41</td>
</tr>
<tr>
<td>2. Siembra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- sembradora/fertilizadora</td>
<td>80 CV/4,2 m</td>
<td>6,45/ha</td>
<td>6,45</td>
</tr>
<tr>
<td>- semilla</td>
<td>120 kg</td>
<td>0,26/kg</td>
<td>31,20</td>
</tr>
<tr>
<td>3. Fertilización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- fertiliz. pend.</td>
<td>50 CV/12 m</td>
<td>0,57/ha</td>
<td>0,57</td>
</tr>
<tr>
<td>- fertilizante 18-46-00</td>
<td>80 kg</td>
<td>0,27/ha</td>
<td>22,16</td>
</tr>
<tr>
<td>4. Control de malezas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- pulverizadora</td>
<td>80 CV/10 m</td>
<td>2,33/ha</td>
<td>2,33</td>
</tr>
<tr>
<td>- herbicida 2,4-D</td>
<td>1,1 l</td>
<td>4,06 l</td>
<td>4,47</td>
</tr>
<tr>
<td>5. Cosecha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- cosechadora</td>
<td>120 CV/4 m</td>
<td>23,49/ha</td>
<td>23,49</td>
</tr>
<tr>
<td>6. Transporte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zorra</td>
<td>50 CV/5 ton/1,3 h</td>
<td>6,57/ha</td>
<td>8,54</td>
</tr>
<tr>
<td>7. Sub-total</td>
<td></td>
<td></td>
<td>155,11</td>
</tr>
<tr>
<td>8. Interés sobre capital corriente</td>
<td>(7) x 5 meses x 8%</td>
<td></td>
<td>5,17</td>
</tr>
<tr>
<td>9. Total Costos</td>
<td></td>
<td></td>
<td>160,28</td>
</tr>
<tr>
<td>10. Costo variable/kg de grano</td>
<td>(9)/2,000 kg/ha</td>
<td></td>
<td>0,08</td>
</tr>
</tbody>
</table>
Cuadro 5. Cálculo del costo de producción de ensilaje de maíz (USS).

<table>
<thead>
<tr>
<th>Cultivo: Maíz (ensilaje)</th>
<th>Cantidad por ha</th>
<th>Precio unitario</th>
<th>Monto por ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENDIMIENTOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento bruto (MS)</td>
<td>8,500 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento corte (MS)</td>
<td>7,800 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pérdidas cosecha (10%)</td>
<td>780 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pérdidas eto (10%)</td>
<td>702 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aprovechamiento (90%)</td>
<td>632 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento utilizable (MS)</td>
<td>5,618 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTOS VARIABLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Labores: tractor + ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- arado</td>
<td>80 CV/1,4 m</td>
<td>21,48/ha</td>
<td>21,48</td>
</tr>
<tr>
<td>- rastra de discos</td>
<td>80 CV/4,1 m</td>
<td>6,42/ha</td>
<td>6,42</td>
</tr>
<tr>
<td>- excéntrica</td>
<td>80 CV/2,1 m</td>
<td>13,59/ha</td>
<td>13,59</td>
</tr>
<tr>
<td>- cincel</td>
<td>80 CV/2,1 m</td>
<td>11,56/ha</td>
<td>11,58</td>
</tr>
<tr>
<td>2. Siembra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- sembradora/en surcos</td>
<td>80 CV/4,5 m</td>
<td>4,10/ha</td>
<td>4,10</td>
</tr>
<tr>
<td>- semilla</td>
<td>18 kg</td>
<td>1,80/kg</td>
<td>32,40</td>
</tr>
<tr>
<td>3. Fertilización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- fertiliz. pend.</td>
<td>50 CV/12 m</td>
<td>0,57/ha</td>
<td>0,57</td>
</tr>
<tr>
<td>- fertilizante 25-34-00</td>
<td>70 kg</td>
<td>0,28/ha</td>
<td>19,60</td>
</tr>
<tr>
<td>4. Control de malazas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- pulverizadora</td>
<td>80 CV/10 m</td>
<td>2,33/ha</td>
<td>2,33</td>
</tr>
<tr>
<td>- herbicida Alrazina</td>
<td>3,0 l</td>
<td>4,32 l</td>
<td>12,96</td>
</tr>
<tr>
<td>5. Cosecha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- micropicadora</td>
<td>80 CV/0,8 m</td>
<td>52,64/ha</td>
<td>52,64</td>
</tr>
<tr>
<td>6. Transporte, compactación y tapado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zorra</td>
<td>60 CV/5 ton/5,3 h</td>
<td>6,57/ha</td>
<td>34,82</td>
</tr>
<tr>
<td>- nylon para tapar</td>
<td>1 m² o 100 g/ton</td>
<td>2,25/kg</td>
<td>1,28</td>
</tr>
<tr>
<td>7. Sub-total</td>
<td></td>
<td></td>
<td>212,47</td>
</tr>
<tr>
<td>8. Interés sobre capital corriente</td>
<td>(7) x 5 meses x 8%</td>
<td></td>
<td>7,08</td>
</tr>
<tr>
<td>9. Total Coste</td>
<td></td>
<td></td>
<td>219,55</td>
</tr>
<tr>
<td>10. Costo variable/kg de grano</td>
<td>(8)/7 800 kg/ha</td>
<td>0,028</td>
<td></td>
</tr>
</tbody>
</table>

III.2.3. EL VALOR DE SUSTITUCIÓN

Representa el valor de un alimento que se deduce del monto que se debería pagar en caso de adquirir el producto de una fuente diferente. Existen tres alternativas de una adquisición en este contexto.

- **El costo de reemplazo**: La explotación produce un producto no vendible con las mismas características que el producto a sustituir, por ejemplo produce más pradera para sustituir ensilaje. El costo de reemplazo se calcula en base al costo variable de la producción de forraje.

 El valor relativo de venta: El producto que puede sustituir al producto que queremos valorizar se puede vender. Un ejem-
Cuadro 6. Costo comparativo de diferentes ensilajes en autoalimentación, en U$S.

<table>
<thead>
<tr>
<th>Parámetros Físicos</th>
<th>Trigo asociado mezcla</th>
<th>Azúcar /T. rojo (p/silo)</th>
<th>Sorgo forrajero</th>
<th>Maíz</th>
<th>Mezcla (corta de limpieza)</th>
<th>Sorgo forrajero /Ach/TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento (ton MS/ha)</td>
<td>3.20</td>
<td>8.50</td>
<td>7.00</td>
<td>6.00</td>
<td>6.50</td>
<td>7.00</td>
</tr>
<tr>
<td>Rendimiento al corto (ton MS/ha)</td>
<td>2.50</td>
<td>3.80</td>
<td>6.30</td>
<td>6.30</td>
<td>2.60</td>
<td>6.30</td>
</tr>
<tr>
<td>Pérdidas cosecha (%)</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Pérdidas silo (%)</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Aprovechamiento (%)</td>
<td>85.00</td>
<td>85.00</td>
<td>90.00</td>
<td>90.00</td>
<td>85.00</td>
<td>90.00</td>
</tr>
<tr>
<td>MS utilizable (ton/ha)</td>
<td>1.63</td>
<td>2.34</td>
<td>4.34</td>
<td>6.05</td>
<td>1.42</td>
<td>4.31</td>
</tr>
<tr>
<td>MJ ENI/kg MS</td>
<td>5.40</td>
<td>4.20</td>
<td>5.80</td>
<td>6.00</td>
<td>4.60</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Cuadro 6. Costo comparativo de diferentes ensilajes en autoalimentación, en U$S.

<table>
<thead>
<tr>
<th>Parámetros Económicos</th>
<th>Costos instalación/ha</th>
<th>Costos cosecha/ha</th>
<th>Costos silo/ha</th>
<th>Costos totales/ha</th>
<th>Costoton MS utilizable</th>
<th>Costos/1,000 MJ ENI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27.21</td>
<td>38.90</td>
<td>74.20</td>
<td>113.08</td>
<td>141.31</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>67.95</td>
<td>79.45</td>
<td>102.56</td>
<td>183.45</td>
<td>186.95</td>
<td>12.84</td>
</tr>
<tr>
<td></td>
<td>7.47</td>
<td>10.76</td>
<td>18.82</td>
<td>36.37</td>
<td>37.82</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>102.64</td>
<td>116.17</td>
<td>215.44</td>
<td>332.87</td>
<td>349.59</td>
<td>32.02</td>
</tr>
<tr>
<td></td>
<td>82.96</td>
<td>49.66</td>
<td>49.64</td>
<td>151.26</td>
<td>87.66</td>
<td>5.52</td>
</tr>
</tbody>
</table>

1. Pérdidas en autoalimentación.
2. Calculados sobre la parte cosechada.
4. Solo costo adicional del trigo.
5. Costo de limpieza.
6. Solo costo adicional del sorgo.
7. En caso de no ensilarse debe hacer un corto de limpieza con una rotativa, como no se hace es un monto que se ahorraría.
8. 3.32 U$S/ton MS cosechada.
Cuadro 7. Valor de transformación de 1 kg de MS de forraje a través de producción de leche (USS).

<table>
<thead>
<tr>
<th>Ingreso bruto</th>
<th>Cantidad/vaca</th>
<th>Precio unitario</th>
<th>Monto total/vaca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venta de leche</td>
<td>4,500 kg</td>
<td>0.11</td>
<td>495.00</td>
</tr>
<tr>
<td>Venta de carne</td>
<td>100 kg</td>
<td>0.45</td>
<td>45.00</td>
</tr>
<tr>
<td>Venta de tomates</td>
<td>1</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>555.00</td>
</tr>
</tbody>
</table>

Costos variables

<table>
<thead>
<tr>
<th></th>
<th>Cantidad/vaca</th>
<th>Precio unitario</th>
<th>Monto total/vaca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrados</td>
<td>2 kg/día</td>
<td>0.13</td>
<td>79.30</td>
</tr>
<tr>
<td>Salud e instalación</td>
<td></td>
<td></td>
<td>25.00</td>
</tr>
<tr>
<td>Ordeno</td>
<td></td>
<td></td>
<td>22.00</td>
</tr>
<tr>
<td>Sueldo familar</td>
<td>1/60 vacas</td>
<td>3.000</td>
<td>50.00</td>
</tr>
<tr>
<td>Capital animal (8%)</td>
<td>550 kg</td>
<td>0.45/kg</td>
<td>19.80</td>
</tr>
<tr>
<td>Diversos (5%)</td>
<td></td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>205.91</td>
</tr>
</tbody>
</table>

Margen bruto

Valor de transformación del forraje (8,022 kg MS)\(^1\)

\[0.06/\text{kg MS}\]

\(^1\) Consumo anual de materia seca estimado como el 3% del peso vivo.

\(^2\) Margen bruto por kilogramo de materia seca consumida.

para calcular la cantidad, hay que resolver la siguiente operación:

\[
\text{Ensilaje de maíz} + \text{Pénte de harina de soja} = \text{Ración}
\]

<table>
<thead>
<tr>
<th></th>
<th>Ensilaje de maíz</th>
<th>Pénte de harina de soja</th>
<th>Ración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor energético (Mcal EN)</td>
<td>1.415 x</td>
<td>1.704 y</td>
<td>1.611</td>
</tr>
<tr>
<td>Valor proteico (% proteína cruda)</td>
<td>6.000 x</td>
<td>45.400</td>
<td>13.300</td>
</tr>
</tbody>
</table>

\[x = \text{Ensilaje de maíz (kg)} \]

\[y = \text{Pénte de harina de soja (kg)} \]

El cálculo es el siguiente:

\[y_1 = 1.611 - 1.415 x\]

\[y_2 = 13.300 - 6.000 x\]

\[y_1 = y_2\]

\[1.611 - 1.415 x = 13.300 - 6.000 x\]

\[1.704 = 45.400\]

El valor relativo de compra: Se compra un producto en el mercado para reemplazar un alimento producido en el predio. El valor de sustitución se calcula de la siguiente manera: se quiere saber el valor de sustitución del ensilaje de maíz para sustituir ración (valor relativo de compra).

Para llegar a sustituirlo con el mismo valor relativo que la ración hay que agregar un suplemento proteico al ensilaje de maíz.

El cálculo se efectúa de la siguiente manera:

<table>
<thead>
<tr>
<th></th>
<th>Valor energético (Mcal EN)</th>
<th>Valor proteico (% proteína cruda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensilaje de maíz</td>
<td>1.415</td>
<td>6.000</td>
</tr>
<tr>
<td>Pénte de harina de soja</td>
<td>1.704</td>
<td>45.400</td>
</tr>
<tr>
<td>Ración</td>
<td>1.611</td>
<td>13.300</td>
</tr>
</tbody>
</table>
42,92 = 37,70 x = 13.3 - 6.0 x
29.60 = 31.70 x
0.934 (kg) = x (ensilaje de maíz)
0.189 kg = y (pellet de harina de soja)

El cálculo es el siguiente:

\[
\begin{align*}
x_1 &= \frac{0.030 + 256.000 y}{1.659} \\
x_2 &= \frac{0.028 + 60.000 y}{1.415} \\
x &= x_2 \\
0.030 + 256.000 y &= 0.028 + 60.000 y \\
0.0254 &= 158.35 y \\
0.0001 &= y \quad (valor por gramo de proteína cruda)
\end{align*}
\]

El valor de intercambio se puede también calcular el valor de sustitución. En el caso del ejemplo, se quiere saber el valor de sustitución de pellets de harina de soja. La fórmula es la siguiente:

\[
\text{VS} = 1.704 \times 0.00202 \text{ (USS)} + 45.4 \times 0.000001 \text{ (USS)}
\]

El valor de compra de pellets de harina de soja es de 0.29 U$S/kg MS.

Como se desprende del ejemplo, este método es más engorroso de usar cuando se pretenden estimaciones rápidas y se cuenta con diversos suplementos a evaluar, pero tiene como ventaja que es relativamente fácil de implementar mediante un programa computacional sencillo en una planilla electrónica, lo que aumenta mucho su rapidez de cálculo y versatilidad.

III.2.4. EL VALOR ÍNDICE

Para subsanar las limitaciones del método anterior, este método asume que en el costo de la ración de una vaca lechera de mediana a alta producción, los suplementos proteicos representan un 30% del costo total, y que los suplementos energéticos insumen el 70% restante. Por lo tanto se estima un costo "índice" (no real) para cada ingrediente, pon-
derando en un 30% su costo por kg de PC y en un 70% su costo por Mcal de EM.

Así, por ejemplo, el costo índice de la pradera convencional sería:

\[(0.30 \times 0.00001 \text{ US$/g} \times 1.000 \text{ g}) + \]
\[+ (0.70 \times 0.0202 \text{ US$/kg}) = 0.01672\]

Con este método se pueden comparar diferentes alimentos. Este método es también de cálculo sencillo y relativamente rápido. Sin embargo, como el rango de contenido proteico es más amplio que el rango de contenido energético de los alimentos, el método presenta limitaciones cuando se comparan ingredientes con contenidos de Proteína Cruda muy diferentes.

El método del valor del costo es el método más fácil. Refiriendo el costo por Mcal ENI se obtiene una valorización del alimento en función del valor nutritivo y en función del potencial de producción.

El valor de sustitución supone equivalencias de la eficiencia de los alimentos, el valor de transformación mide la eficiencia efectiva del uso del alimento.

En el caso que se pueda calcular el valor de transformación y el valor de sustitución de un alimento producido, hay que tomar siempre el valor más bajo. Este principio sigue la lógica de optimizar la ganancia. En el caso de ensilaje de maíz, el valor de transformación es de 0.07 US$/kg MS y el valor de sustitución de 0.14 US$/kg MS.

Para obtener el valor de la MS de ensilaje de maíz hay que tomar el valor más bajo que es el valor de transformación. No sería lógico realizar el cálculo con el valor de sustitución, el cual está por encima de la valorización efectiva.

Si el valor de sustitución fuera de 0.06 US$/kg MS de ensilaje, habría que efectuar el cálculo con este valor, porque a partir de 0.06 US$/kg MS sería más barato que producir con ración.
BIBLIOGRAFIA CONSULTADA

